Radiative Transfer Methods: New Exact Results (Code ARTY) and Testing the Accuracy of Some Numerical and Approximate Methods (e.g. ALI-like methods)

Loïc Chevallier

Postdoc: University of Kentucky, Dept. Physics \& Astronomy

Outline

- History
- Survey of methods
- 2 slides of formula (standard problem)
- Known difficulties
- ALI tests
- Exact results: ARTY
- Classical reference solutions and benchmarks
- Test 1: albedo $=0$ (cosmology)
- ALI: what's wrong, how to improve?
- conclusion

History

- Transport theory (TT) : propagation of light (energy) in an absorbing, emitting and scattering medium
- founded par astrophysicists (early 20th) : Schuster (1905), Schwarzschild $(1906,1914)$
- First reviews: Milne (1930), Hopf (1934)
- TT interdisciplinarity : astrophysics, external geophysics, neutronics, chemistry, biology, etc.
- bibles 50-60s (astrophysics): Chandrasekhar (1950), Kourganoff (1952), Sobolev (1963, 1975), Busbridge (1960), Ivanov (1973), Van de Hulst (1980)
- Specific intensity $I(\mathbf{r}, \mathrm{t}, \mathbf{n}, v)$: 7 variables (too much)

Solving methods

(Wehrse \& Kalkofen 2006, A\&A Rev.; I. hubeny; R. Despres; J. Morel)

- Exact (known mathematical properties, no discretization):

Hopf, Busbridge, Mullikin (Das), Ambartsumian, Sobolev (Danielan), $\sqrt{ }$-law (Sobolev 1958), Finite Laplace Transform + ARTY (Chevallier \& Rutily, 2005),

- Simulation: Monte-Carlo
- Numerical (full exact equation, discretized variables): discrete ordinates, S_{N}, spherical harmonics P_{N}, F_{N} method (C. Siewert), Feautrier, variable Eddington factor, Ax=b: Λ-iteration (ALI/GS/SOR: XIXe-1986), conjugate gradient (Krylov solver) + preconditioning, CEP (M. Elitzur)...
- Approximate (equation or solution) : 1-stream, 2-stream, Eddington, no scattering (albedo $=0$), diffusion, moment methods (hydro M1...), escape probability ...
- Type? Statistical methods, unstructured grids, Fourier transform
- LITTERATURE: JQSRT, TTSP mainly.

Transfer theory - The standard problem

 $\forall \nu, \mu \frac{\partial I}{\partial \tau}(\tau, \mu)=I(\tau, \mu)-S^{*}(\tau)-\frac{\varpi(\tau)}{2} \int_{-1}^{1} I\left(\tau, \mu^{\prime}\right) \mathrm{d} \mu$- plane-parallel,
- continuum + line (add ϕ)
- diffusion:
monochromatic, isotropic
- albedo $\omega=1-\varepsilon$
- S^{*} : interqal qøurce (LTE: ε B) $I_{n}(\tau)=\frac{1}{2} \int_{-1} I(\tau, \mu) \mu^{n} \mathrm{~d} \mu$
$J(\tau)=I_{0}(\tau)$
$F(\tau)=4 \pi I_{1}(\tau)$
$P(\tau)=\frac{4 \pi}{c} I_{2}(\tau)$

$\tau=\int_{z}^{z *} \chi\left(z^{\prime}\right) \mathrm{d} z^{\prime}$

Transfer theory - integral formulation

(difficulty apparent as compared to differential formulation, and BC)

$$
\begin{gathered}
I(\tau, \mu)= \begin{cases}I(0, \mu) \exp (\tau / \mu)-\frac{1}{\mu} \int_{0}^{\tau} S\left(\tau^{\prime}\right) \exp \left[\left(\tau-\tau^{\prime}\right) / \mu\right] \mathrm{d} \tau^{\prime} & \text { if }-1 \leq \mu<0, \\
S(\tau) & \text { if } \mu=0, \\
I\left(\tau^{*}, \mu\right) \exp \left(-\left(\tau^{*}-\tau\right) / \mu\right)+\frac{1}{\mu} \int_{\tau}^{\tau^{*}} S\left(\tau^{\prime}\right) \exp \left[-\left(\tau^{\prime}-\tau\right) / \mu\right] \mathrm{d} \tau^{\prime} & \text { if } 0<\mu \leq+1 .\end{cases} \\
S(\tau)=[1-\varpi(\tau)] S^{*}(\tau)+\varpi(\tau) J_{0}(\tau)+\frac{\varpi(\tau)}{2} \int_{0}^{\tau^{*}} E_{1}(|\tau-t|) S(t) \mathrm{d} t \\
J_{0}(\tau)=\frac{1}{2} \int_{-1}^{0} I^{-}(\mu) \exp (\tau / \mu) \mathrm{d} \mu+\frac{1}{2} \int_{0}^{1} I^{+}(\mu) \exp \left[-\left(\tau^{*}-\tau\right) / \mu\right] \mathrm{d} \mu
\end{gathered}
$$

- $S=(1-\omega) S_{0}+\omega \mathrm{J}$: source function ($\mathrm{J}=\Lambda$: mean intensity)
- $S_{0}=(1-\omega) S^{*}+\omega J_{0}$: primary source fonction (known)
- LTE: $\mathrm{S}^{*}(\mathrm{t})=\mathrm{B}[\mathrm{T}(\mathrm{t})]$ (Planck)
- Difficulties due to scattering: $\omega \rightarrow 1$ and/or $\tau^{*} \rightarrow+\infty$

ALI method - principle

(I. Hubeny, Stellar Atmospheres Theory: An introduction, 2001)

In a seminal paper Cannon (1973) introduced into astrophysical radiative transfer theory the method of deferred corrections (also called, somewhat. inaccurately, an operator splitting), long known in numerical analysis. The idea consists of writing

$$
\begin{equation*}
\Lambda=\Lambda^{*}+\left(\Lambda-\Lambda^{*}\right) \tag{121}
\end{equation*}
$$

where Λ^{*} is an appropriately chosen approximate lambda operator. The iteration scheme for solving (119) may then be written as

$$
\begin{equation*}
S^{(n+1)}=(1-\epsilon) \Lambda^{*}\left[S^{(n+1)}\right]+(1-\epsilon)\left(\Lambda-\Lambda^{*}\right)\left[S^{(n)}\right]+\epsilon B \tag{122}
\end{equation*}
$$

or, in a slightly different form whose importance becomes apparent later,

$$
\begin{equation*}
S^{(n+1)}-S^{(n)}=\left[1-(1-\epsilon) A^{*}\right]^{-1}\left[S^{\mathrm{FS}}-S^{(n)}\right] \tag{123}
\end{equation*}
$$

where

$$
\begin{equation*}
S^{\mathrm{FS}}=(1-\epsilon) \Lambda\left[S^{(n)}\right]+\epsilon B . \tag{124}
\end{equation*}
$$

Known difficulties (solutions)

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

- E_{1} narrow: slow convergence (preconditioning, acceleration)
- E_{1} weakly singular: $\mathrm{dS} / \mathrm{d} \tau(0)$ infinite (grid refinement)
- (High) gradients in S_{0} (gr, linear interpolation instead parabolic)
- Optically thick spectral lines ($\tau^{*} \gg 1,1-\omega \ll 1$) (gr)
- Iterative methods stopping criterion (multi-grid?)
- Discretization, numerical parameters (gr), roundoff errors
- Iterative methods are slow, e.g. multi-D (Krylov, parallel?)

Known difficulties - singular E_{1} kernel

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

$$
E_{1}(\tau)=\int_{0}^{1} \exp (-\tau / \mu) \frac{\mathrm{d} \mu}{\mu}
$$

- $\mathrm{E}_{1}(\tau)$: kernel, $\mathrm{E}_{1}(0)=\infty$
\rightarrow singular integral equation
- non-local in τ, but E_{1} tiny range, $\mathrm{Ax}=\mathrm{b}$, A almost diagonal
\rightarrow slow convergence

- Escape probability for lines is bad:
optical depth difference
- x2: Hubeny 2001,
- 50\%: Elitzur \& Asensio Ramos 2005)

Known difficulties - slow convergence

Source function $S(\tau)$ with iterations for Λ-iteration (left) and ALI (right)
Paletou, C. R. Acad. Sci. Paris, t. 2, Serie IV (2001)

Known difficulties - slow convergence

Accuracy with iteration (left) and $\mathrm{S}(\tau)$ with iterations for $\mathrm{ALI}+\mathrm{Ng}$ (right) Paletou, C. R. Acad. Sci. Paris, t. 2, Serie IV (2001)

Known difficulties (solutions)

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

- E_{1} narrow: slow convergence (preconditioning, acceleration)
- E_{1} weakly singular: $\mathrm{dS} / \mathrm{d} \tau(0)$ infinite (grid refinement)
- (High) gradients in S_{0} (gr, linear interpolation instead parabolic)
- Optically thick spectral lines ($\tau^{*} \gg 1,1-\omega \ll 1$) (gr)
- Iterative methods stopping criterion (multi-grid?)
- Discretization, numerical parameters (gr), roundoff errors
- Iterative methods are slow, e.g. multi-D (Krylov, parallel?)

Known difficulties - Surface (∞)

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

- std problem $\left(\mathrm{S}_{0}=\varepsilon\right)$: $S(0)=\sqrt{ } \varepsilon, S(\infty)=1$
- dS/d $\tau(0)$ infinite
\rightarrow refined grid near surface

Source function S for the standard problem (weak line) Chevallier, Paletou \& Rutily, A\&A (2003)

Known difficulties - Surface

- $1-\omega, \tau^{*}=$
0.5, 2 (continuum), 1e-2, 20 (average line), 1e-8, 2 e 8 (strong line). - accuracy worst NEAR surface (grid 1e-4)
- needs refined grid near surface (log-spaced)

Accuracy of ALI for the standard problem Chevallier, Paletou \& Rutily, A\&A (2003)

Known difficulties (solutions)

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

- E_{1} narrow: slow convergence (preconditioning, acceleration)
- E_{1} weakly singular: $\mathrm{dS} / \mathrm{d} \tau(0)$ infinite (grid refinement)
- (High) gradients in S_{0} (gr, linear interpolation instead parabolic)
- Optically thick spectral lines ($\tau^{*} \gg 1,1-\omega \ll 1$) (gr)
- Iterative methods stopping criterion (multi-grid?)
- Discretization, numerical parameters (gr), roundoff errors
- Iterative methods are slow, e.g. multi-D (Krylov, parallel?)

Known difficulties - S_{0} gradients

S0 = constant:
4% surface, $\ll 1$ inside S0 = gradient:
0.1% surface, 30% inside 0.01 + roundoff error (small)

ALI accuracy, stellar atmospheres grid

$$
\mathrm{S} 0=1, \exp (-\tau)
$$

Known difficulties - High S_{0} gradients (AGN, $\mathrm{P}=$ cte \rightarrow thermal instability)

- ALI+Ng for transfer
- 600 layers
(50-100/dec. vs. 7 atm.)
Need time (iterations)
- High gradients

OK : adaptive grid

- Number of angles

OK : choice 3 (vs. 20)
Temperature

Geometrical depth (column density $\mathrm{cm}-2$)

Known difficulties - High S_{0} gradients (AGN, $\mathrm{P}=$ cte $\boldsymbol{\rightarrow}$ thermal instability)

- stopping criterium change $<0.1 \%$ and less than 100 iterations + empirical convergence tricks - default : parabolic no convergence (some P cte WA) Cause : interpolation instabilities

- 1 solution : linear interpolation Convergence (not always) Longer (iterations 300 vs.50)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Known difficulties (solutions)

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

- E_{1} narrow: slow convergence (preconditioning, acceleration)
- E_{1} weakly singular: $\mathrm{dS} / \mathrm{d} \tau(0)$ infinite (grid refinement)
- (High) gradients in S_{0} (gr, linear interpolation instead parabolic)
- Optically thick spectral lines ($\tau^{*} \gg 1,1-\omega \ll 1$) (gr)
- Iterative methods stopping criterion (multi-grid?)
- Discretization, numerical parameters (gr), roundoff errors
- Iterative methods are slow, e.g. multi-D (Krylov, parallel?)

Known difficulties - Discretization (standard problem)

- $1-\omega, \tau^{*}=$
0.5, 2 (continuum),

1e-2, 20 (average line), $1 \mathrm{e}-8,2 \mathrm{e} 8$ (strong line).

- Maximum error

Accuracy of ALI for the standard problem Chevallier, Paletou \& Rutily, A\&A (2003)

Known difficulties - Discretization (standard problem)

- $1-\omega, \boldsymbol{\tau}^{*}=1 \mathrm{e}-8,2 \mathrm{e} 8$ (strong line).

Accuracy of ALI for the standard problem strong line, $x=$ spatial, $y=$ angular Chevallier, Paletou \& Rutily, A\&A (2003)

Known difficulties - Discretization (standard problem)

- $1-\omega, \tau^{*}=$
0.5, 2 (continuum), 1e-2, 20 (average line) $1 \mathrm{e}-8,2 \mathrm{e} 8$ (strong line)
- Maximum error

Accuracy of ALI for the standard problem along the iteration number
Chevallier, Paletou \& Rutily, A\&A (2003)

Known difficulties - Discretization (standard problem)

Optimal number of iterations of ALI for the standard problem Chevallier, Paletou \& Rutily, A\&A (2003)

Known difficulties (solutions)

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

- E_{1} narrow: slow convergence (preconditioning, acceleration)
- E_{1} weakly singular: $\mathrm{dS} / \mathrm{d} \tau(0)$ infinite (grid refinement)
- (High) gradients in S_{0} (gr, linear interpolation instead parabolic)
- Optically thick spectral lines ($\tau^{*} \gg 1,1-\omega \ll 1$) (gr)
- Iterative methods stopping criterion (multi-grid?)
- Discretization, numerical parameters (gr), roundoff errors
- Iterative methods are slow, e.g. multi-D (Krylov, parallel?)

Known difficulties - Stopping criterion

Accuracy of $\mathrm{ALI}+\mathrm{Ng}$ for the standard problem with iterations (strong line)
Chevallier, Paletou, \& Rutily, SF2A proceedings (2003)

Known difficulties - Stopping criterion

Accuracy of ALI +Ng for the standard problem with difficulty Chevallier, Paletou, \& Rutily, SF2A proceedings (2003)

Testing ALI std parameters

- TLUSTY stellar atmosphere code (I. Hubeny) standard parameters
- continuum transfer equation, but equivalent to line also (Milne)
- 4 functions $\operatorname{SO}(\tau)=1, \tau, \tau^{5}, \exp (-\tau), \exp (\tau)$
- constant albedo ω
- 3 physical conditions $\left(\omega, \tau^{*}\right)=$
- $(0.01,10)$: continuum,
- $\left(10^{-4}, 10^{3}\right)$: average line,
- $\left(10^{-8}, 10^{8}\right)$: strong line.
- logarithmic spatial grid, 70 points from $10^{-9} \tau^{*}$ to τ^{*}
- Gauss-Legendre angular grid, 3 points per quadrant
- Stop iterations when $\mathrm{R}_{\mathrm{c}}=10^{-3}$.

Testing ALI std parameters $-\mathrm{B}(\tau)=1$ (continuum)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=1$ (average line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=1$ (strong line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\tau$ (continuum)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\tau$ (average line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\tau$ (strong line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\tau^{5}$ (continuum)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\tau^{5}$ (average line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\tau^{5}$ (strong line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\exp (-\tau)$ (continuum)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\exp (-\tau)$

 (average line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-\mathrm{B}(\tau)=\exp (-\tau)$ (strong line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-B(\tau)=\exp (\tau)$

 (continuum)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-B(\tau)=\exp (\tau)$ (average line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters $-B(\tau)=\exp (\tau)$ (strong line)

Loïc Chevallier, 30 July 2007, workshop Non-LTE line formation for trace elements in stellar atmospheres, Nice, France.

Testing ALI std parameters - Summary

$$
S_{0}(\tau)=(1-\varpi) B(\tau)+\frac{\varpi}{2} B\left(\tau^{*}\right) E_{2}\left(\tau^{*}-\tau\right)
$$

$B(\vartheta)$	$\mathrm{T}=0.99, \vartheta^{*}=10$	$\varepsilon=1-\mathrm{T}=10^{-4}, \vartheta^{*}=1000$	$\varepsilon=1-\mathrm{T}=10^{-8}, \vartheta^{*}=10^{8}$	
1	$0.2 \%-0.7 \%$	4%	15%	
ϑ	$0.5-0.9 \%$	3%	20%	
ϑ^{5}	$1.5-2 \%$	$15-20 \%$	$9-20 \%$	
$\exp (-\vartheta)$	30%	Maximum error in the deep layers		
	30%			
$\exp (+\vartheta)$	2%	$\mathrm{~T}=0.99, \vartheta^{*}=40$	30%	

Tests ALI for some exact problems using ARTY Chevallier et al. A\&A 411, 221(2004); Chevallier (GRETA 2004)

Exact methods - ARTY

- B. Rutily (1992): exact solutions 1D (maths $>16 \mathrm{yr}, 2 \mathrm{D}, 3 \mathrm{D}$ possible) 12 publications TTSP, JQSRT
- Continuum and line (Milne)
- Method:
- Finite Laplace transform,
- complex domain,
- integral formulation,
- Fredholm equations regular kernel
- Code ARTY: numerical evaluation ($6 \mathrm{yr}, 300+$ routines, 50000 lines)
- NO numerical parameters (builtin)
- Applications: Atmospheres (star, planets), Benchmark, etc.

Accurate, reliable, fast

ARTY Standard relative error Chevallier \& Rutily, JQSRT (2005)

Formulation of a problem (ARTY)

Geometry and dynamics (\mathbf{r}, t)

- Stationary ? YES NO
- Static? YES NO
- Homogeneous? YES NO
- Geometry
- 1D
- Plane-parallel
- Infinite, semi-infinite, finite
- Spherical
- infinite, finite radius, non connexe
- Cylindrical
- infinite, finite radius, non
connexe
- 2D, 3D, any

Type of diffusion (\mathbf{n}, \mathbf{v})

- isotropical
- conservative $($ albedo $=1)$
- non conservative
- anisotropical
- monochromatic
- With frequency redistribution
- Complete redistribution
- Partial redistribution

Classical references solutions and tests in litterature

Classical reference solutions

- $S(0)=\sqrt{ } \varepsilon S^{*}(0)$, exact for isothermal semi-infinite with no illumination (Bueno et al. 1995)
- Eddington approximation semi-infinite or finite (Bueno et al. 1995)

Tests in litterature (unsufficient, no exact reference solution)

- Comparison between 3 codes $\varepsilon=0.5$: easy (Pascucci et al. 2004)
- Comparison photoionisation codes (Pequignot et al. 2001)
- Elitzur \& Asensio Ramos (2005): Escape probability, ALI

Classical reference solution $-\sqrt{ } \varepsilon$-law

- point $=$ couple $\left(\epsilon, \tau^{*}\right)$
- $\epsilon \in\left[10^{-12}, 1\right]$ et
$\tau^{*} \in\left[0.1,10^{8}\right]$
- $k(\epsilon) \approx \sqrt{3 \epsilon}$ pour $\epsilon \rightarrow 0$

II (inverse profondeur thermalisation)

- erreur $<10^{-4}$ pour $k(\epsilon) \tau^{*}>10$
- non valable continuum
 $\left(k(\epsilon) \tau^{*} \approx 3.3\right)$

Classical reference solution - Eddington

- slab isotherme non éclairé
- problème intégro-différentiel \rightarrow différentiel
- erreur ALI/Eddington :

II

$$
3.5 \times 10^{-3}
$$

- erreur Eddington :

$$
8.6 \times 10^{-2}
$$

- approximation valable
 surface et région
optiquement épaisse

$$
S_{\mathrm{E}}\left(\epsilon, \tau^{*}, \tau\right)=1-(1-\epsilon) \times \frac{\exp (-\sqrt{3 \epsilon} \tau)+\exp \left(-\sqrt{3 \epsilon}\left(\tau^{*}-\tau\right)\right)}{1+\sqrt{\epsilon}+(1-\sqrt{\epsilon}) \exp \left(-\sqrt{3 \epsilon} \tau^{*}\right)}
$$

ALI method (+ GS/SOR)

- 2 -stream = ALI 1 angle
- ALI gives $\mathrm{I}(\mathrm{z}, \mu, v): 1 \%$
- Fast robust iterative method
- Max. accuracy : z,u-grid
- PRD, polarization, multi-D...
- Numerical parameters: τ, μ-grid, $\mathrm{N}(\mathrm{Rc}), \mathrm{CI}$, interp. $S(\tau)$: quadratic/linear \Rightarrow Needs fine tuning
- GS/SOR > x5 faster

Quang, Paletou, Chevallier (2004)
Chevallier et al., A\&A (2003)

Known difficulties (solutions)

$$
S(\tau)=S_{0}(\tau)+\varpi(\tau) \frac{1}{2} \int_{0}^{\tau^{*}} E_{1}(|t-\tau|) S(t) d t
$$

- E_{1} narrow: slow convergence (preconditioning, acceleration)
- E_{1} weakly singular: $\mathrm{dS} / \mathrm{d} \tau(0)$ infinite (grid refinement)
- (High) gradients in S_{0} (gr, linear interpolation instead parabolic)
- Optically thick spectral lines ($\tau^{*} \gg 1,1-\omega \ll 1$) (gr)
- Iterative methods stopping criterion (multi-grid?)
- Discretization, numerical parameters (gr), roundoff errors
- Iterative methods are slow, e.g. multi-D (Krylov, parallel?)

Current status of methods (T. Lanz)

- Realistic problems: dead end, a few days to months without radiative transfer (i.e., cosmology, 3D, 7 variables)
- Idealised star (10^{7} points)- cosmological simulation (10^{24} points): space $\left(10^{4}-10^{9}\right)$, time $\left(1-10^{4}\right)$, directions $\left(10-10^{4}\right)$, frequencies $\left(10-10^{7}\right)$

Methods (strength, weakness)

- numerical: accurate (a few \%) (less than expected), slow
- ALI: 3ms per point per CPU (1 day - $10^{14} \mathrm{yr}$),
- Monte-Carlo: difficulties with spectral lines (time x10 ${ }^{8}$)
- approximate: fast, not accurate (for whole physical parameter space)
- Exact: fast and accurate, particular problems

TEST ALI/GS/SOR 2D ARTY - ponctual source

Fig. 5. Relative errors between spatial averages of the angular moments J, H and K given by the 2D-SOR 2-level iterative process and their analytical values for $\epsilon=0.01 \mathrm{vs}$. the number of spatial points of a

TEST ALI/GS/SOR 2D ARTY - ponctual source

tion time (for a Pentium-4 @ 3 GHz processor) and number of iterations for the $\mathrm{H}_{\text {I }}$ multilevel benchmark mode $y_{\max }=5000 \mathrm{~km}$ and $z_{\max }=30000 \mathrm{~km}$ together with 3 angles per octant and 8 frequencies; the temperature of 1 as pressure $p_{g}=1 \mathrm{dyn} \mathrm{cm}^{-2}$.

Points number	MALI 2D	GSM 2D	SOR 2D	MG 2D	R_{c}
123×123	3min9s (46)	2min19s (29)	$1 \min 17 \mathrm{~s}(16)$	$55 \mathrm{~s}(11)$	1.1×10^{-2}
163×163	$9 \min 39 \mathrm{~s}(79)$	$6 \min 56 \mathrm{~s}(48)$	$3 \min 33 \mathrm{~s}(24)$	$1 \min 52 \mathrm{~s}(13)$	2.1×10^{-3}
203×203	$22 \min 47 \mathrm{~s}(116)$	$14 \min 36 \mathrm{~s}(68)$	$7 \min 34 \mathrm{~s}(33)$	$2 \min 50 \mathrm{~s}(14)$	5.7×10^{-4}
243×243	$45 \min 32 \mathrm{~s}(158)$	$29 \min 10 \mathrm{~s}(90)$	$14 \min 3 \mathrm{~s}(43)$	$4 \min 13 \mathrm{~s}(14)$	1.9×10^{-4}

Conclusion

- Solving the transfer equation is difficult but not hopeless
- Iterative methods do converge (slowly), we know some solutions for 1D
- Developping new methods, or making codes need real reference solutions (ARTY, benchmarks can be done)
- Tests available: surprises with classical numerical methods (ALI)
- Next tests: moments methods, escape probability,...
- Current work in France:
- GRETA group (Ph. Stee) for surveys, improvements, discussion
- ALI/GS/SOR in 1D and 2D (F. Paletou, OMP, Toulouse), CG in progress
- Same in 3D (F. Thévenin, GAIA)
- New 1D algorithms (CG based) with mathematicians (St Etienne, France; Moscow)
- Radiative transfer developments (independent of a given problem) should be a research thema for astrophysicists

