Non-LTE line formation for trace elements in stellar atmospheres, July 30 – August 4, 2007, Nice, France

Departures from LTE in chemically stratified atmospheres

Lyudmila Mashonkina Institute of Astronomy, Russian Academy of Sciences

Chemical peculiarity

- Abundances of some individual elements do not follow overall metallicity.
 - Non-LTE line formation is similar to that
 - in non-peculiar stars.
 - SE calculations with a right value of the element abundance.
 - Non-LTE abundances are determined iteratively.
- There are evidences for a non-uniform vertical distribution of the selected elements.

How does this affect line formation?

I. ³He star 3 Cen A (B5 III-IVp), HgMn stars 46 Aql (B9 III) and κ Cnc (B8 III).

3 Cen A and 46 Aql, Mn II 6122 – 6132 in emission,
κ Cnc Mn II 6122 – 6132 in strong absorption (observations are shown by open circles).

LTE cannot predict an emission in the line if the line is of photospheric origin.

Sigut (2001): Non-LTE line formation for Mn II. $b_j/b_i > 1 \rightarrow S_v/B_v$ rises toward the surface

leading to an emission line.

Effect depends on the abundance of Mn.

Stratification of the Mn abundance

- 3 Cen A:
- Uniform Mn abundance.
 Weak emission at [Mn/H] < 1.
- Mn is concentrated above $\log \tau = -2$ with [Mn/H] ≈ 2.5 .

This distribution matches the strengths of both emission and weak absorption lines.

• 46 Aql:

Mn II emission is weaker due to lower T_{eff} and less sensitivity of the correction for stimulated emission to departures from LTE. • κ Cnc:

Predicted equivalent widths for 3 Cen A depending on the Mn abundance.

A large Mn abundance forces mult.13 into absorption.

II. roAp (rapidly oscillating) stars

- photometric variability, ~10⁻³ mag
 radial velocity variations:
 e.g., γ Equ, P = 12.3 min.; amplitudes: 25 m/s to 800 m/s from different lines
 slow rotators, e.g. γ Equ, T = 76 years
- magnetic field, e.g. γ Equ, B = 4 kG

♦ a violation of LTE ionization balance

- *Cowley & Bord*, 1998: log ε (Nd III) – log ε (Nd II) = 1.5 dex (γ Equ)
- *Ryabchikova et al.*, 2001: the sample of 31 roAp and Ap stars In <u>all</u> roAp stars, $\log \varepsilon$ (Nd III) > $\log \varepsilon$ (Nd II) $\log \varepsilon$ (Pr III) > $\log \varepsilon$ (Pr II)

(up to 2 dex!)

Empirically derived Nd distribution in the atmosphere of γ Equ. (*Ryabchikova et al.* 2002, LTE analysis)

Nd is concentrated above $\log \tau = -8$ with [Nd/H] > 6.

The LTE assumption is not valid in so high atmospheric layers.

Non-LTE line formation for Nd II/III

(Mashonkina et al. 2005)

NdIII

G⁵H⁶H°⁵I ⁵I⁶⁵K⁶K⁰⁶L⁶L⁶M°0 ⁴G⁴H⁴H°⁴I ⁴I°⁴K⁴K⁰⁴L⁴L°

Model atom of Nd II

Nd II:

658 measured levels + 993 predicted levels (A.Ryabtsev) Nd III: 883 levels

• Uniform Nd distribution $(T_{eff} = 7250 \text{ K})$ $\Delta_{\text{NLTE}} = (-0.12) - (+0.03) \text{ dex} \text{ (Nd II)}$ $\Delta_{\text{NLTE}} = (-0.26) - (-0.42) \text{ dex} \text{ (Nd III)}$

We fail to remove the disparity between $\varepsilon(Nd II)$ and $\varepsilon(Nd III)$

Nd stratification from non-LTE analysis

$$\Delta_{\text{NLTE}} = (+0.97) - (+1.42) \text{ dex (Nd II)}$$

$$\Delta_{\text{NLTE}} = (-0.27) - (-0.51) \text{ dex (Nd III)}$$

• NLTE calculations were performed also for Pr II/III (*Mashonkina et al.* 2007, in preparation).

b-factors for the stratified Nd distribution

The sources of the uncertainties of non-LTE modelling

 We use stationary homogeneous (!) LTE (!) model atmospheres assuming non-uniform distribution of the REE .

The sources of the uncertainties of non-LTE modelling

- 2) The lack of accurate atomic data.
- Collisional cross-sections.
 Effect is minor for the uppermost layers.
- Photoionization cross-sections.
 We use the hydrogenic cross-sections.

Test calculations for $0.01\sigma_{ph}$ and $100\sigma_{ph}$:

 $\begin{array}{lll} \Delta_{\rm NLTE} & {\rm decrease/increase} \\ & {\rm by } \ 0.5 \ / \ 0.1 \ {\rm dex}, \\ {\rm the \ layer \ of \ enhanced \ Nd} \\ {\rm and \ Pr \ is \ shifted \ upward \ by} \\ \Delta {\rm log \ } \tau_{5000} \cong 0.5. \end{array}$

NLTE and LTE equivalent widths in the stratified model compared to the observed ones in roAp star γ Equ

The found Nd distribution is supported by the later observationsγ Equ:9 Nd II and9 Nd II and9 Nd III linesHD 24712:21 Nd II and20 Nd III lines

"G "H "H° "I "I" "K "K" "L "L° ™ o +G +H +H° +I +I" +K +K" +L +L° .