Non-LTE line formation for trace elements in stellar atmospheres, July 30 - August 4, 2007, Nice, France

Departures from LTE in chemically stratified atmospheres

Lyudmila Mashonkina
Institute of Astronomy, Russian Academy of Sciences

Chemical peculiarity

- Abundances of some individual elements do not follow overall metallicity.
- Non-LTE line formation is similar to that in non-peculiar stars.
- SE calculations with a right value of the element abundance.
- Non-LTE abundances are determined iteratively.
- There are evidences for a non-uniform vertical distribution of the selected elements.
How does this affect line formation?
I. ${ }^{3} \mathrm{He}$ star 3 Cen A (B5 III-IVp), HgMn stars 46 Aql (B9 III) and к Cnc (B8 III).

- 3 Cen A and 46 Aql, Mn II 6122-6132 in emission, - к Cnc

Mn II 6122 - 6132 in strong absorption (observations are shown by open circles).

LTE cannot predict an emission in the line if the line is of photospheric origin.

Sigut (2001): Non-LTE line formation for Mn II. $b_{j} / b_{i}>1 \rightarrow S_{\sqrt{ }} / B_{v}$ rises toward the surface leading to an emission line.

Effect depends on the abundance of Mn .

Stratification of the Mn abundance

- 3 Cen A:
- Uniform Mn abundance. Weak emission at $[\mathrm{Mn} / \mathrm{H}]<1$.
- Mn is concentrated above $\log \tau=-2$ with $[\mathrm{Mn} / \mathrm{H}] \approx 2.5$. This distribution matches the strengths of both emission and weak absorption lines.
- 46 Aql:

Mn II emission is weaker due to lower $T_{\text {eff }}$ and less sensitivity of the correction for stimulated emission to departures from LTE.

κ Cnc:

Predicted equivalent widths for 3 Cen A depending on the Mn abundance.

A large Mn abundance forces mult. 13 into absorption.

II. roA p (rapidly oscillating) stars

- photometric variability, $\sim 10^{-3} \mathrm{mag}$
- radial velocity variations:
e.g., γ Equ, $\quad \mathrm{P}=12.3$ min.;
amplitudes: $25 \mathrm{~m} / \mathrm{s}$ to $800 \mathrm{~m} / \mathrm{s}$ from different lines
slow rotators, e.g. γ Equ, $T=76$ years
- magnetic field, e.g. γ Equ, $B=4 \mathrm{kG}$
- a violation of LTE ionization balance
- Cowley \& Bord, 1998: $\log \varepsilon(\mathrm{Nd}$ III) $-\log \varepsilon(\mathrm{Nd}$ II) $=1.5$ dex (γ Equ)
- Ryabchikova et al., 2001: the sample of 31 roAp and Ap stars In all roAp stars, $\quad \log \varepsilon($ Nd III $)>\log \varepsilon(\mathrm{Nd}$ II) $\log \varepsilon(\operatorname{Pr}$ III $)>\log \varepsilon($ Pr II)
(up to 2 dex!)

Empirically derived Nd distribution in the atmosphere of γ Equ. (Ryabchikova et al. 2002, LTE analysis)

Nd is concentrated above $\log \tau=-8$ with $[\mathrm{Nd} / \mathrm{H}]>6$.

The LTE assumption is not valid in so high atmospheric layers.

Non-LTE line formation for Nd II/III

NdIII

$\left.\left.\left.{ }^{6} G^{6} H^{6} H^{0}\right|^{6}\right|^{6}\right|^{6} K^{6} K^{\circ} L^{6} L^{6} M^{0} O^{4} G^{4} H^{4} \vdash^{04}| |^{4} 0^{4} K^{4} K^{04} L^{4} L^{\circ}$
Model atom of Nd II
(Mashonkina et al. 2005)
Nd II:
658 measured levels +
993 predicted levels (A.Ryabtsev)
Nd III: 883 levels

- Uniform Nd distribution

$$
\left(T_{e f f}=7250 \mathrm{~K}\right)
$$

$\Delta_{\text {NLTE }}=(-0.12)-(+0.03) \operatorname{dex} \quad(\mathrm{Nd}$ II)
$\Delta_{\text {NLTE }}=(-0.26)-(-0.42) \operatorname{dex} \quad(\mathrm{Nd}$ III $)$

We fail to remove the disparity between $\varepsilon(\mathrm{Nd}$ II) and $\varepsilon(\mathrm{Nd}$ III)

Nd stratification from non-LTE analysis

- Stratified Nd distribution.
γ Equ:
$[\mathrm{Nd} / \mathrm{H}]=4$ at $\log \tau_{5000}<-3.5$
HD 24712:
$[\mathrm{Nd} / \mathrm{H}]=4.5$ at $\log \tau_{5000}<-4.5$
(empirically from analysis of
4 Nd II and 4 Nd III lines)
(1) $\Delta_{\text {NLTE }}=(+0.97)-(+1.42)$ dex (Nd II) $\Delta_{\text {NLTE }}=(-0.27)-(-0.51)$ dex (Nd III)
- NLTE calculations were performed also for Pr II/III (Mashonkina et al. 2007, in preparation).
b-factors for the stratified Nd distribution

The sources of the uncertainties of non-LTE modelling

1) We use stationary homogeneous (!) LTE (!) model atmospheres assuming non-uniform distribution of the REE .

$$
\text { At } \lambda>1600 \AA
$$

stratified and uniform models provide the same radiation field.

The sources of the uncertainties of non-LTE modelling

2) The lack of accurate atomic data.

- Collisional cross-sections. Effect is minor for the uppermost layers.
- Photoionization cross-sections. We use the hydrogenic cross-sections.

Test calculations for $0.01 \sigma_{\mathrm{ph}}$ and $100 \sigma_{\mathrm{ph}}$:
$\Delta_{\text {NLTE }}$ decrease/increase by 0.5 / 0.1 dex, the layer of enhanced Nd and Pr is shifted upward by $\Delta \log \tau_{5000} \cong 0.5$.

NLTE and LTE equivalent widths in the stratified model compared to the observed ones in roAp star γ Equ

The found Nd distribution is supported by the later observations γ Equ: $\quad 9 \mathrm{Nd}$ II and 9 Nd III lines HD 24712: 21 Nd II and 20 Nd III lines

Method: NLTE calculations model atom: energy levels from laboratory measurements (NIST) and calculations (A.Ryabtsev)

Nd III (607 levels)

