Non-LTE line formation for trace elements in stellar atmospheres, July 30 – August 4, 2007, Nice, France

Departures from LTE in cool stars

Lyudmila Mashonkina Institute of Astronomy, Russian Academy of Sciences

Modelling of the spectra of late-type stars requires quite a different approach.

• Convection is important.

See *Asplund M.* 2005, ARAA, 43, 481 for a review of non-LTE and 3D effects.

The chromosphere is a characteristic of the Sun and probably of most late-type stars.

E. g., non-LTE + the chromosphere explain the formation of the core of solar H_{α}

(Przybilla & Butler, 2004).

Here, only the lines of a pure photospheric origin are discussed.

Non-LTE line formation

in the atmospheres of cool stars was studied for

ΗI	He							
Li I	Be II	ΒI	CI	ΝI	ΟΙ	F	Ne	
Na I	Mg I,II	Al I	Si I	Р	S I	C 1	Ar	
ΚI	Ca I,II	Sc	Ti	V	Cr	Mn I	Fe I,II	Co Ni
Cu I	Zn I	Ga	Ge	As	Se	Br	Kr	
Rb	Sr II	Y	Zr II	Nb	Mo	Tc	Ru	Rh Pd
•••••								
Cs	Ba II	Eu II						

Problems in non-LTE modelling: Fe I

Fe is one of the most important elements in astrophysics. Fe I/Fe II $\rightarrow \log g$; the Fe I excitation balance $\rightarrow T_{eff}$ **Non-LTE studies.**

Athay & Lites (1972), Boyarchuk et al. (1985), *Steenbock* (1985), Takeda (1991), *Holweger* (1996), Shchukina et al. (1997), dex. *Gratton et al.* (1999), Thevenin & Idiart (1999), Gehren et al. (2001)

The main non-LTE effect for Fe I is overionization. But there is not a consensus on the magnitude of these effects. E.g. for [Fe/H] = -3, Δ_{NLTE} (Fe I) varies between ~0 and 0.3

An adjustment of log g may be up to +0.8 dex!

HD 140283 (Shchukina et al. 2005) $[M/H] = -2.5 \log = 3.7$ T_=5700 NLTE + 3D:6.0 6.0 $\log \epsilon$ (Fe I) = 9 gol 5.77 ± 0.19 5.5 (≈30 lines), 5.0 FeI, NLTE log ϵ =5.77±0.186 FeII, NLTE 5.60±0.475 FeI, NLTE log ε=5.77±0.154 FeII, NLTE 5.34±0.214 5.0 $\log \epsilon$ (Fe II) = ЗD 1D 4.5 4.5 3 0 1 2 8 10 0 1 2 3 8 10 5.60 ± 0.48 χ (eV) χ (eV) (≈10 lines) 6.0 FeII, LTE FeII, LTE FeI, LTE 6.0 FeI, LTE log €=4.85±0.152 log €=5.20±0.149 5.18±0.109 5.18±0.109 Where do the 5.5 5.5 ω problems log come from? 5.0 5.0 3D 1D ? Incompleteness 4.5 4.5 12 10 2 з 8 10 0 2 3 8 1 of the model atom, χ (eV) χ (eV) ? Photoionization cross sections,

? Hydrogenic collisions.

One example of non-LTE calculations in 3D and 1D atmospheres.

Ca I/II non-LTE line formation

I. CaI/CaII ionization equilibrium in the Sun and 5 selected metal-poor stars (Mashonkina, Korn, & Przybilla 2007)

Non-LTE works! log g *from the* Ca I/II *ionization equilibrium*.

Star	log g (Hip)	(CaI - CaII) _{LTE}	log g (Sp)	age
HD 122563	1.5±0.2	-0.34	1.5±0.2	
(4600K / -2.51)				
BD +3° 740	4.18±0.2	-0.40	3.90±0.15	14.9 Gyr
(6340K / -2.65)				
BD -13° 740	-	-0.46	3.88±0.15	13.0 Gyr
(6390K / -2.66)			0.40 NITE	HD 122563
(Mashonkina, Zh	ao, Gehren, et	al. 2007)	0.30 0.20	• • • •
Non- [Ca	-LTE removes a/Fe] values w:	the trend of the ith line strength	∑ 0.00	• c c c
obta	ined in LTE at	pove $W_{\lambda} = 60$ Å	0 20	40 60 80

Eq.width (mA)

log g from the Ca I/II ionization equilibrium.

HE1327-2326 $T_{eff} = 6180 \text{ K}, [Fe/H] = -5.45,$? log g $\approx 3.7 \text{ or } \approx 4.5,$ LTE, (CaII – CaI) > 0.5 dex (Aoki, Frebel, Christlieb, et al. 2006).

λ[A]

log g = 3.7 fromNLTE Ca I(4226) /Ca II(8498) (Korn, Mashonkina, Richard, et al. 2007).

Non-LTE predictions for the O I 777 nm triplet

- 1. The observed center-to-limb variation favors non-LTE line formation (*Kiselman*, 1993).
- 2. $\Delta_{\text{NLTE}} \approx -0.2 \text{ dex},$ log $\varepsilon_{\text{Sun}}(\text{O I 777 nm}) \approx 8.7$ (Kiselman, 1993, 1D).

 $log \epsilon_{Sun}(O) = 8.72 \pm 0.05$ (*Steffen*, 2006, 3D, [O I])

Observations shown as bands are well described in non-LTE.

 $\Delta \log \epsilon (3D - 1D) \approx -0.06 \text{ dex.}$ (Asplund et al. 2004)

The effect on stellar abundance determinations

- Departures from LTE grow toward the lower [Fe/H]:
- collision rates decrease,
- photoionization rates increase
- **NLTE LTE** at [Fe/H] < -2:
 - \approx +0.6 dex for [Al/Mg],
 - ≈ -0.5 dex for [Na/Mg].

(Gehren et al. 2006)

The effect on stellar abundance determinations

The *odd-Z/even-Z* ratios are important for testing nucleosynthesis models.

Observed run [Na/Mg] – [Fe/H] compared to the predictions of Timmes et al. (1995). *(Gehren et al.* 2006)

NLTE leads to less scatter of stellar abundances (Shimansky et al. 2003)

The effect on stellar abundance determinations

Our understanding of how nucleosynthesis proceeds throughout the Galaxy history depends on the accuracy of line formation modelling.

