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Atomic data

Fermi’s Golden Rule

Keith Butler

Time dependent perturbation theory gives us Fermi's Golden Rule

dP
Wys = =2 =27 (W, | V| V,) .

which describes a transition from state a to state b caused by a
perturbation V. A biief oversicn
So if we know V' and the wavefunctions we can calculate the =
transition probability.
Examples are

Hydrogen
wavefunctions

The Quantum
Defect Method

o Oscillator strengths V =r

) ) ) Many electron
e Born approximation for Coulomb potential V =1/r systems
Scattering theory

So how do we get the wavefunctions?

The close-coupling
expansion

R-Matrix method

Intermediate
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Hydrogen wavefunctions

The Schrédinger equation for a central potential is

-5 vo)] v = B

Solutions of the hydrogenic Schrédinger equation (V/(r)
in spherical coordinates are

V= Y/m(e,¢)Rn/(r).
finite mass gives u = m.M/(m. + M)
nlm are the quantum numbers
n>1, m=-—/...1

n and [ are integers

/I = 0 1 2 3 4
s p d f g

Yim are spherical harmonics

R, are the radial functions (Lagrange polynomials)

The angular functions give us selection rules.
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Negative energies

Setting u = rR the radial equation simplifies to

{_u? I(1+1) V} L_E

2 dr? 2r2 P

atomic units (e = h=m=1), E in Rydberg units
Hydrogenic V = —z/r. If p=2zr and € = —A? = E/Z>, gives

> I(+1) 2 .,

So all hydrogenic atoms satisfy the same wave equation provided
we decrease the size of the atom by a factor z and at the same
time increase the ionization energies by a factor z2.
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Atomic data

Hydrogen wavefunctions

Keith Butler

What do the radial wavefunctions look like?

Energy normalized hydrogenic wavefunctions
3 T T T T T

n=5

A brief overview

Introduction
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2 A systems
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Expectation values

Now we have them we can calculate things with them

2
AP YA |
n* (1+1)—1
1 z
ok
1 _ z2
<2> N m(l+3)
3

<r3>n,,,, (=Y

and oscillator strengths/photoionization cross sections

2AEf, df

fr= S elrlon P oun o

oscillator strengths independent of z
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Positive energies

Let e = k2, I =0 and z =0 then

2
du 5

dp?

solutions are e™P or coskp,sinkp. A general solution is a linear
combination
u = Asinkp + Bcos kp

or
u=1/A?+ B2(cosdds +sindod.).

(writing ¢s for the sine and ¢, for the cosine solutions) and

tand = B/A.
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Thus

u=+/A%?+ B?sin(kp+3).

d is called the phase shift. We can find A and B if we know the
function and its derivative at some value of p = pg

u(po) = Asin(kpo)+ Bcos(kpg)
u'(po) = Acos(kpo)— Bsin(kpo)

Once we have A and B we have the wavefunction from pg to co.

For I # 0 but still with z =0 kp is replaced with (kp — %“) The
full Coulomb equation then has

1 i i
(kp—k|n2kp—2n+arg(l+1—;()>

More complicated but still just sine and cosine.
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Atomic data

Energy normalized wavefunctions
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There is continuity from bound states n — oo to the free states E =0
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The Quantum Defect Method Atemic data

Keith Butler

For hydrogen-like ions, the energy levels are E, = —Ryz?/n?

Ry Rydberg constant for H (109677 cm™1)
Observations show that for more complicated systems the energies
are

E,= _R722.
(n _,unl)2
The Rydberg constant is
A brief overview
R— Rw(= 109737.312cm*1) Introduction
1+1/1836« AW e ions
RSV
o Atomic weight (AW) because of reduced mass main Many electron
e quantum defect u,; slowly varying function of the energy (E), si::....g theory
e large for small values of / The close-coupling
e large / hydrogenic, u,; small R-Matrix method

Intermediate
energies



Atomic data

Keith Butler

Seaton (1958) shows that the phase shift at positive energies is
related to the quantum defect at negative energies via

& = muy

and that bound states can occur at energies where

tan[n(v+u)] =0

A brief overview

i.e. V4 u is an integer Intraduction
This illustrates the continuity of physical variables across Fithem

. . . . wavefunctions
ionization thresholds. It can be put to practical use. ‘

e bound state energies give quantum defects. Use to _

Many electron

o infer the energies of unobserved bound state energies P
Scattering theory

e deduce values of phase shifts - photoionization

The close-coupling
expansion
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Intermediate
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Quantum defects for C IV s states. The ionization energy is
520178.4 cm~! (Moore C.E., NSRDS-NBS 3, Sect. 3)

nl
2s
3s
4s
5s
6s
7s
8s
Os

E(cm™1)
.00
302849.00
401348.09
445368.50
468784.00
482706.00
491650.81
497736.69

1.837
2.842
3.844
4.844
5.845
6.845
7.845
8.845

.163
.158
.156
.156
.155
.1565
.1565
.155
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Quantum defects for C IV Atomic data
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Quantum defects for C IV
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€ Introduction
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Atomic data
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Can go in both directions so that calculated or observed
phase shifts may be used to find bound state energies etc.

Theory can be used to calculate oscillator strengths cheaply
(Bates and Damgaard, 1950)

Functions will not be correct for small r but integral weights
large r

A brief overview
Introduction

ez

(orlrlon = | [ oivorar| _

Method works well for one electron systems and cases in _
which a single electron does all the work.
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Quantum defect oscillator strengths for C 1V.

Lower
2s
2s
2s
2s
2s
2s
2s
2s
2s
2s

Upper

3p
4p
5p
6p
7p
8p
9
10p
11p

foo

.2857
.1993
.0600
.0265
.0142
.0085
.0055
.0038
.0029
.0022

frRm
0.2855
0.203
0.061
0.0270
0.0145
0.0087
0.00565
0.0039
0.0028
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Atomic data

Photoionization Cross Sections
Can be applied to photoionization cross sections (Burgess and
Seaton 1964)
Extrapolate the known quantum defects to positive energies to
obtain estimates of the phase shifts.

Keith Butler

Oscillator strengths for C IV
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Comparison QDT vs. R-matrix for C IV Atomic data

Keith Butler

Comparison of QD and R-Matrix photoionization cross sections
0.6

05 - ,

A brief overview
Introduction
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Helium - Two electron atoms Atomic data
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The next simplest system is an atom with two electrons, Helium.
The Hamiltonian

1 1 zZ Z 1
IvZ_Ty2 _Z 2~y =EvV .
7' p'n n r 2 (r17r2) (r13r2)

A brief overview

Since the Hamiltonian does not change when r; and r; are
interchanged

Introduction

ez

\U(r1,r2) = i\ll(rz,rl). ::Vefollnc!ijn.
Defect Method

When the + sign applies WV is said to be space symmetric, denoted
by V.. The — holds for space antisymmetric functions ¥_. _

Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
energies



Atomic data
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Must take spins into account so

V(q1,q2) = V(r,r2)x(1,2).

. . . . . . brief overview
These must be antisymmetric (Pauli) - gives singlets and triplets. "

Introduction

Hydrogen
wavefunctions

The Quantum
Defect Method

Scattering theory

The close-coupling
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Intermediate
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Atomic data

Keith Butler

If the total orbital angular momentum is L with eigenvalues L, M,
an energy term with a particular value of S and L is normally
written 2571 L since for light elements LS-coupling is a good
approximation. Here first the /s are coupled to give L and ss to
give S and then the sum L+ S is taken. The term has multiplicity
(25+1) and L is denoted by a letter

L = 0 1 2 3 4 ...
S P D F G ... A brief overview
Introduction
When relativistic effects are taken into account, the levels of the Hydrogen
terms are subject to fine-structure splitting. L, S are then no longer =~ wevefunctions
good quantum numbers, constants of the motion, but the total RS
angular momentum J =L+ S is. Such a level is represented by _
25+1LJ. Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
energies



Independent Particle Model Atomic data

Keith Butler

What are the energy levels of Helium.
e Three-body system so must approximate.
o treat the two electrons separately

couple them later.
Very simplest is to H = Hy + H' with

A brief overview

1 Z 1 Z Introduction
Hy = S v, v ——— hi+ ho Hydrogen
2 n r 2 r2 ro wavefunctions
1 The Quantum
H = =. Defect Method

hy and hy are both hydrogenic

Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
energies



o Energies are

Z2 /1 1
=2 (4=
b5 (1)

e ground state energy —Z2 = —4 a.u. observed —2.90 a.u.

e singlet and triplet states are degenerate.

e must include 1/r»

Next simplest is

1 1
HO = —EVEI—FV(I’l)—EVé—‘rV(I’z)E /1+h/2
1 Z Z
H = ——=_—v -—— -V .
n2 n (r1) rn (r2)

We have simply rearranged the terms.
o Guess V(r)=—(Z—s)/r=2Z./r.
e Screening constant s allows for the electron shielding
e Energies are hydrogenic with effective charge Z,.
e Ground state —Z2. s = 0.3 reproduces observed value
e Just a fit
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N-electron systems

The Hamiltonian for an N-electron system is a straightforward
generalization of that for Helium, namely

H= Z(—W )+ Z

j>i=1 rij

and the N-electron wavefunction

V(q1,q2...qn) = V(ry,ro..

aa)x(1,2,...N)

must be antisymmetric so that the Pauli exclusion principle is
satisfied. The independent particle approximation can be made for
the N-electron system in the same way as for the two-electron
system. Each electron then moves in an effective potential that
describes the average effect of its interaction with the other

(N —1) electrons. They in turn ‘screen’ the nuclear charge.
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1/r1» behaves like 1/r-

potential looks like

V(I’,’) = —E_ + S(r,-).

ri

r; largest r~ = r; and

zZ N=11 Z—N+1
V(r):—:+ Y S=-=——.

j=1 ri ri
r; is smallest
N—-1 1 7
Vi) ~-= Y, =) =—=+a constant
ri =17 fi

the electron “sees” full nuclear charge.
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Atomic data
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In between, S(r;) will be a complicated function. Bearing these
considerations in mind, we rearrange the Hamiltonian once more

H = Hc+H;
N 1 )
He = Vi +V(r h;
e’ <2 ~ve) =%
N
Hl — Z —_ Z < —+ V(r’ > A brief overview
j>i= 1l i Introduction
1 ydrogen
= Z *—ZS r, :a:efugnc!ionl
j>i=1 rij i The Quantum
Defect Method
The advantage in doing this is that H; is now (hopefully) small _

and can be treated using perturbation theory.

Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
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Atomic data
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e Each orbital solution of

[_%VE + V(’)]Wnlml(r) = EnIWnIm,(r)

e looks like
A brief overview
III"'I"r'lms (q) = Rnl(r) Ylm/ (e7¢)x%’ms Introduction
Hydrogen
e No two electrons can have same set of 4 quantum numbers wavefunctions
(Pauli). ety

Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
energies



Atomic data

Configurations, shells, sub-shells

Keith Butler

e Total energy is sum of one-electron contributions
E= ZEnlv
nl

e Distribution of the electrons among the orbitals is a
configuration, written as (nyh)(nph)%2...(nyh)">.

e E.g. Ground configuration (the energetically lowest) O is

1s22s%2p* A brief overview

e Abbreviated to 2p* with 2 1s, 2 25 and 4 2p electrons. Introduction

e This is based on central field approximation. e

e The electrons are indistinguishable. No 1s electron. Detecs Method

o Electrons with same value of n/ belong to same sub-shell _
(equivalent) Scattering theory

e same n belong to same shell. T ot
e two values of ms, (2/+1) values of m; give maximum R-Matrix method

occupancy of a sub-shell is 2(2/+1). e.g. 2p° Intermediate



Configuration Interaction Atomic data

Keith Butler

e independent particle model good = single configuration
good.

e H; mixes configurations and terms with same L and S values.

e e.g. ground state of He | is W, = 1s? 'S. Corrections give

W, = a1 (1s%) + ax(152s) +az(1s3s) + - - + ak(2s?) + -

A brief overview

with Y7, a2 = 1. Introduction
. . b
e 1s52s wavefunction will be wavefunctions

The Quantum
Defect Method

WISQS:b1(152)+b2(1S2S)+b3(1S3$)+"'. _

e Independent particle model and single configuration make Scattering theory
sense if single coefficient is close to 1. i elbemrping

expansion
R-Matrix method

Intermediate
energies



Wavefunctions are optimized Atomic data
Keith Butler

Configuration interaction uses

V= ZC,'(D,'.

1. Choose a set of the ¢;.

2. Choose a set of one-electron orbitals (adjustable
parameters).

A brief overview

Introduction

3. Calculate the Hamiltonian matrix Hj; = (V;|H|V;). Mt

wavefunctions

4. Diagonalize for eigenvalues E, and coefficients ¢;.

The Quantum

5. Calculate the weighted sum YN g,E,, g, is weighting Oetect Method

factor, e.g. the statistical weight or 1. _

Scattering theory

6. Go back to 2 and adjust the parameters until this sum is a e A
minimum. expansion pine
R-Matrix method

Intermediate
energies



Sum over i runs over all bound and free states. Must be
truncated to fit into computer. Balance between doable and

desireable.

Normally LS-coupling = low-Z ions.
Relativistic effects via perturbation theory
GRASP is fully relativistic but more difficult.

Calculations along isoelectronic sequence (e.g. C I, N I,
O IlI...) cheaply if “algebra” is stored.
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Atomic data

Keith Butler

Look out for

e Cowan and ZEALOT. Matrix elements Hj; are sums of
integrals. Least squares fits to observed energies give these
integrals and then radiative data (Cowan). Kurucz uses this.
The data are ideal for opacity calculations because of
completeness. Data for individual ions and transitions can
also be good. ZEALOT works similarly, used by Fawcett for

ions of iron. A brief overview
e Multi-Channel-Hartree-Fock (MCHF). A generalization of the '“':’""“'i“
. . . . Hydrogen
Hartree-Fock approach to configuration interaction. The e e o
one-electron orbitals are adjusted to give a self-consistent The Quantum

. R . . Defect Method
solution to the problem. Gives best solution for any given set
of configurations and one-electron orbitals. Atomic data are _
of high-quality. Semteerinaltheery

The close-coupling
expansion

R-Matrix method

Intermediate
energies



e CIV3 and AUTOSTRUCTURE. Major difference is the radial

wavefunctions. In CIV3, these are analytical ‘Slater-type
orbitals’ (STOs)

28 i+
Pn,'li(r):Zbiji( Si) 2 rli e Gii

T V2

essentially asymptotic hydrogenic functions. Radial integrals
computed extremely quickly.

In AUTOSTRUCTURE potential chosen is
Thomas-Fermi-Dirac-Amaldi which ‘smears’ out the
contributions of the electrons. They are used in the
calculation of ‘target’ wavefunctions for scattering
calculations to which we turn next.
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Cross sections Atomic data

Consider a typical experiment. Ideally, we have a uniform, Rt Cntl

monoenergetic beam consisting of N particles per unit time per
unit area perpendicular to the beam. If the density in the target n
is low enough in each collision only a single particle is involved. If
the target is thin enough multiple scatterings will not occur. d\/’
is the number of particles scattered into the solid angle d2
centred about a direction Q

The number of scattered particles will be proportional to N, n and
dQ) with a constant of proportionality defined by

A brief overview

dG Introduction
[ _
dN' = Nn = (6.0)d.

Hydrogen
wavefunctions

The Quantum

the differential cross section. It is the ratio of the number of Defect Method
scattered particles dN' to the flux of incident particles with respect  Many electron
to the target and has the dimensions of an area. e

The total cross section is the integral of the differential cross T ——
section over all angles expansion
R-Matrix method
do Intermediate
O - e e dQ energies
tot dQ ( 9 ¢)



Simple scattering theory Atomic data

Scattering by a potential allows us to define such quantities as the Keith Butler
cross section, the collision amplitude and so on. We begin with
the Schrodinger equation in its time dependent form

[;Vz + V(r)] V(r,t) = iE\U(r, t).

We assume V/(r) to be real and time-independent so that

W(r,t) = y(r)e ™

A brief overview
Introduction
and

1 Hydrogen
|:V2 + V(r):| \V(f) _ E\[I(I’) wavefunctions
2 The Quantum
Defect Method

E, the energy is written as 1k> = 2v2 and we also assume that V' any electron

systems
is of short range (atoms only, no Coulomb potential). For large r —
we haVe to SO|Ve The close-coupling
(V2 + kQ)W(r) — 0 expansion
R-Matrix method

and we write

Intermediate

Y(r) ~ Wine(r) +Vse(r). e



This representation is intended to describe the situation shown

N

Tarfet

/ { N

Incoming plane wave Outgoing spherical wave

A monoenergetic incident beam strikes the target atom. The
beam is scattered by our target particle into a solid angle dQ
where it is detected. As with water waves striking a rock, the
outgoing waves will be spherically symmetric and different
fractions will be scattered into the different directions.

Atomic data
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The monoenergetic incident beam can be described by the plane

wave _
Wine(r) = Ae’*T
(A is a constant) while the scattered beam is
ikr

Wee(r) = Af(k,e,q))eT.

f(k,0,0) is known as the scattering amplitude. The differential
cross section is

do
— =|f(k 2
o = If(k0,0)]
with a total cross section
do
= [ —dQ.
Giot a0 d

Atomic data
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Atomic data

The close-coupling expansion

Keith Butler

The close-coupling expansion is an attempt to mimic the
scattering experiment as closely as possible. H is simplest example.

e stationary target atom has wfn. y(a|ry) with a= nim
e scatters electron with wavefunction F(alry).

e close-coupling expansion is

W(re,r) =Y w(alr1)F(alr). et

Introduction
e cach pair is a channel, atom and electron in definite states Hydrogan
. L. wavefunctions
during the collision.

The Quantum
. . . .. Defect Method

e bound states retain their character during the collisional -
Many electron

process systems

Scattering theory

e sum so that all channels on equal footing
e note the similarity to Cl _
R-Matrix method

Intermediate
energies
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Atomic data

Keith Butler

The close-coupling equations may be derived as follows. The
functions satisfy the identity

/\y*(a\rl)[Hf E1W(r1,r) d% = 0

since HV = EV. A bit of algebra later. ..

[V +KZ1F (alr) = 2} Vi (r) F(aIr)

A brief overview
Introduction

ez

1712 wavefunctions
o E=E,+3k3.
a + 27a The Quantum
1.2 ¢ Defect Method
e >kj is the channel energy

Many electron
o if positive the channel is open, negative the channel is closed. T

Scattering theory

V,, is shorthand for [w*(a|ry)Vy(a'|r1)d®r; _

R-Matrix method

Intermediate
energies



Atomic data

Keith Butler

set of coupled differential equations
with exchange

[V2+k2]Fi(a| )_22[‘/32’ i Waa’( )]Fi(a/|r)'

exchange much more complicated as

Was (VF(310)= [ W (ales)[H(rv.r2) — E]F (o 1) dPrau(ae).

A brief overview

Introduction

F under the integral = coupled integro-differential

ez

equations. S P e
. . The Quantum
Solve using standard techniques Defect Method
Exchange small for large r iy e
systems
Exchange small for large / Scattering theory

Exchange small for large z _

Exchange small for large E R-Matrix method
Intermediate
energies



Weak Coupling
We can now look at simpler approximations. Remember

°
ikjr
(U, 1)

r

e

F(j,i) ~ e*iT§;+

V2 +KIFG i) =2 LV (FGLile). ()

e now have two boundary conditions

k? large so
F(j,i)~ eik"'r5j,'

an incoming plane wave. Put this into the RHS of (1) to
obtain the first Born approximation

[V + k2]FBa(j,i) = 2Vji(r)e™i™.

.. 1
fBl(Ja’):*%(kjWﬂki)

How large must the energy be? Who knows.

Atomic data
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Distorted Wave Atomic data

Keith Butler

o distorted wave approximation assumes all except for Vj; are
negligible. Have
[V2+ KRG i) = 2V5F (i) +2V;F (i)

e Solution is

3 A brief overview
fowi.i) =~ 5 [ 70—V (ki) &
Hydrogen
wavefunctions

where

he Quantum
[V2 —2Vi+ kl?]}’(,' =0 e T
Many electron

ikir systems

fDW . Scattering theory

.T(Iakl) ~ elk r51’+e

e Distorted wave with exchange — replace V by VW _

R-Matrix method

e Can also use Coulomb functions for ions

Intermediate
energies



Bethe approximation Atomic data
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e Start with DW approximation

. 1 k&
ol 1) = g [ 101Valki)

e note that 1 1
Vi=—t
. rn»2
e expand 1/r
P / 12 1 1 rL-r A brief overview
—_— = 3 - Introduction
f12 r r Hydrogen
wavefunctions
e Integrate over ry, e
Defect Method
rs- (j |r1 | ) Many electron
le-(rz) e
ry

Scattering theory

e cross section is _

R-Matrix method

o(i —J) yr /| ;)13 ki) |? dk; x 7|(J‘r1| )2 Intermediats
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o Oscillator strength is

fi
3|l = 52
o free-free Gaunt factor
2 4
r 32w
k dk. _ k., k’ . A brief overview
/’( J / k,kj\/gg( ! ) Introduction
Firhemem
® 5o cross section is e et
ety
4 . eftect etho
G(i —)j) /?2 AEg( ) .Nyl::eymelleclron

Scattering theory
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Similar for photoionization (cross section a(Ex))

)g (ki ki) dEx

GIOH( k2a\/>/ I+Ek
Plane waves (Born) gives Bethe

ﬁlo <k+k>

&= ki — k|

Seaton and van Regemorter use g as fit parameter
Only good when f;; large
Do not use if possible
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Atomic data

Partial Wave Theory

Keith Butler

\- v
J/ 1 AN

Tncoming plane wave Outgoing spherical wave

e Convenient to use outgoing and incoming spherical wave
functions — problem is more symmetric

A brief overview
Introduction

e waves look like e
wavefunctions
+(kr—31m)
_ ~ € 2 The Quantum
¢i(k/m|r) =k 1/2 Y/m(r) _—. Defect Method
r M |
any el lectron
systems

¢ normalize (gives S matrix) Seartering theory

Vs(ahmalry,rp) rz:ww(a|r1)¢,(ka/2m2|r2) _

R-Matrix method
— Z W(a' 1) (ko lsmb|ra)S(a' lymly, abma)  (2) Intermeiate

11l
a'lymy,
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e then
A omi
f(a'ka,aka) = ——— Z lemz(k )Y my,
(kak )2 A
Ip mp
> (kz‘)ilz—lé T(a'/ﬁ m'2, al m2) A bri:f overview
Introduction
(3)  tydrogen
wavefunctions
and T(o/,0) = (o, ) — S(a', ) is the transmission matrix. The Quantum,

Many electron
systems

Scattering theory
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General case
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Couple Ik, include spin and generalize
Cross section is

T (2L+1)(2S+1)
QoiLiSi = o4LiS) = 37 L 2L, 1 1)25, 71)| e

I,-IJ
e collision strength is A brief overview
2L 1 25 1 Introduction
(i) = B2 iz e,
The Quantum
e convolve with Maxwellian Defect Method
Many electron
8.631x 10°° e
qU — neWT’-j' Scattering theory
o Ti=Js Qx)e > dx (x = E/kT) varies slowly eliticnst el
Intermediate
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The K matrix Atomic data
Keith Butler

computers don't like complex numbers

® SO use

0 c) (KImle) = k™2 Y (F) <°f’5> (kr—21m)

sin
e K given by
A brief overview
Vi ~ ds(a)+ Z K((x” a)dc(a). Introduction
o Hydrogen
wavefunctions
® 2ip;~ b, —®_ and 20, ~ P, +d_ 50 ety
any electron
1+iK T
5 = 1 _ ,‘K Scattering theory
e With only one channel K = tand, the phase shift. _

R-Matrix method
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Accuracy of calculation

Keith Butler

e Depends on target
o More levels (should be better)
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E A brief overview

Energy (Ryd)
@
o
T
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4or 7 Introduction
- ] el
20 2 =3 wavefunctions
1 — n=2 g
o — The Quantum

Defect Method

Figure: Target energies for Fe2!* (Badnell, Griffin and Mitnik, 2001) xf."!me,'“"“

Scattering theory

o Agreement between observed and calculated energies _
e Agreement between length and velocity f-values R-Matrix method

Intermediate
energies

o Agreement with other f-values



R-Matrix method for Hydrogen

e seek solutions for r < a (R-matrix boundary). R-matrix box.
e ais finite so this is a bound state problem

e Equations solved once for each value of LS.

Radial Schrédinger equation for H is

d> I(I+1) 2 B
gt~z —; - BFe(n=0

with boundary condition

Fg(a)=0.

Solutions only for a discrete set of energies E = e, written as f,(r).
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Table: Eigenvalues and functions for H, / =0 (Yan & Seaton, 1985)

DGR WN =X

€k
—1.007362
—0.232335
1.093783
3.335493
6.400272
10.272967

f used to expand Fg(r)

FE(r

some more algebra shows

FE(a) =

R(E) = Z fi(a

fk(a)
0.136186
—0.719054
0.688598
—0.661618
0.650858
—0.645343

=

Z r)Ace

R(E)Fg(a)

)(ex — E) M i(a).

If we know f, and e, we can calculate Fg at all energies.
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Atomic data

Matching at r = a: Bound states

Keith Butler

e look for vector X so that at r = a
F = PX
F = PX
e F=RF'so
PX =RP'X
A brief overview
e non-trivial solutions only when Introduction
Hydroges
/ wavefunctions
det[P— RP'|=0.
The Quantum
Defect Method
e R comes from inner region, P from outer. Many electron
' systems
e calculate determinant on a fixed energy mesh, scan for roots Scattering theory
with X have physical wavefunctions and energies from r =0 The close-coupling
to r = oo, expansion
 R-Matrix method

Intermediate
energies
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Matching at r = a: Free states

Keith Butler

For all channels open
P=5S+CK

S and C are the sine and cosine-like Coulomb functions.

F =RF’ atr=a

A brief overview

Introduction

which gives immediately
orectommions

K =(C—RC)H(S—RS). The Quantum

Defect Method

The same can be done when some channels are closed, the Many lectron
L RETa o
principle is the same. seareering theory

The close-coupling
expansion

Intermediate
energies
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Summary

Keith Butler

o Diagonalisation of H gives R at any energy.

e Matching to the Coulomb functions at r = a gives K or
bound states.

e K is enough for collisional data.

e radiative need

A brief overview
(WIr[W) = (V[e[W'); + (V[r[¥')o tvoduction
e inner integrals are sums of e ione

The Quantum
Defect Method

/
(U|r| u ) Many electron
systems

pre-calculated and stored. Semteerinaltheery

The close-coupling

e outer region W are Coulomb functions and calculated rapidly expansion

Intermediate
energies



Some examples

Figure: Low energy photoionzation of C*. (Kjeldsen et al, 1999. The

Cross section [10'16 cm?

Photon 2nergy [eV]

solid curve is from Nahar (1995)
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Some examples (Champeaux et al, 2003)
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Dielectronic recombination

Keith Butler

e Resonances in photoionization is dielectronic recombination
e Can also combine f-values and background cross sections

5x10™

4x10”")

3x10™

Rate Coefficient (cm”s”)

A brief overview

Introduction

Hydrogen
wavefunctions

The Quantum
Defect Method

Rate Coefficient (cm’ s’}

Many electron
systems

o 200 400 600 800 1000

Electron Energy (eV) .
Scattering theory

Fig. 1. Fe!® to Fe!'™ total DRrate coefficients dueto 2 — 2and 2 — 3

core excltations: a) TSR experiment (Savin et al. 1999, 2002a); b) the The close-coupling
present MCBP calculations with the RR contribution added, which is expansion

responsible for the upward curve of the background with decreasing

e _

Intermediate

Figure: Zatsarinny et al (2003) energies



Relativistic Effects

o Full relativistic - DARC (Norrington and Grant)
e BP R-Matrix (Berrington et al)

e Breit-Pauli - DW packages (various)

o |CFT - Algebraic transformation (Badnell)

Caollision strength

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

10 20 30 40 50 &0 7O 80 90 100
Ground state energy (Ryd)

Figure: Badnell & Griffin, 2001
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Intermediate energies

e at low energies — close coupling

e at high energies — Born

e at intermediate energies - CCC, RMPS
There's nothing new

100 N=10 N=11 N=12 N=13 N=14 N=10 N=11 N=12 N=13 N=U
© Xe100 Ae1.00 Ae2.00 Awl00 Ax1.00 Aw1.06 Ae0.83 A=1.07 Aw0.55 Ael.06

[FEER
L
LI
LI

LT T

state energy (Ryd)

|
|
|
|
|

Fig. 1. The spectrum of the hydrogen target is shown for various Laguerre bases. On the lefi-hand side we keep A = | On the right-hand
side A s varied 50 a5 to keep one of the positive energy levels constant at 0.2 Rydbergs. A logarithmic scale is used for the positive
energies.

Figure: Bray and Stelbovics, 1995
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Convergent close coupling (CCC) and R-matrix with pseudostates
(RPMS) differ in detail but both solve the problem in the same
way. RPMS has an advantage compared to CCC since, as in the
normal R-matrix method, the diagonalization of the Hamiltonian is
done once and then cross sections at a large number of energies
are obtained by matching the external functions to those from the
inner region. This allows the resonances to be delineated which ——
can only be done at great expense with the CCC method. o et

The Quantum
Defect Method
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Intermediate energy calculations for H
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Figure: Bartschat et al, 1996
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Atomic data

Summary

Keith Butler

Radiative data
e quantum defect good for 1 electron systems
Cl calculations (much) better
e MCDF best for oscillator strengths
e There are good and bad calculations

e Photoionization from R-matrix method A brief overview
Collisional data Introduction

e Bethe only if nothing else e neions

e Born only very high energies The Quantum.

e Distorted wave not good for low z Many <lectron

e R-matrix good for low temperatures systems

e CCC and RMPS best Szl dicey

The close-coupling
expansion

R-Matrix method

1.64




Addendum: Determination of possible terms

Note that for a closed sub-shell, only a 'S term is possible since
My =Y;m; =0, Ms =Y;ms, =0. For non-equivalent electrons,
the exclusion principle is automatically satisfied, so that we can

simply use the addition rules for angular momenta

J= |J1—J2|7...,|J1 —I—Jz‘
for L and S separately. Consider two electrons with /i, . Then
L=|h—h|...|h+h|

and since 5y = 5, = % S=0orl. Eg fornpn'p, h=h=1and
L =0,1, or 2. Thus the possible terms are

136 13p 13D,
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If i =1and b =2, (npn'd), on the other hand, L =1, 2, 3 and
the possible terms are

1’3P 1’3D 1’3F

To work out the terms for three electrons, we start from the
known two electron terms and then systematically add the third
electron, using (65) once more. For example, consider npn’pn’d.
The first two electrons give the terms listed in (66). The d
electron has [ =2,5 = % If we add this to the 1S term
('=5"=0), wefind L=2S= % a 2D term.
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In the same way, adding the n”d electron to

1p
Ip
3S
3p
D

gives
gives
gives
gives
gives
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2P, 2D, 2F

251 2P, 2D, 2F, 2G

2,4D

2’4P, 2’4D, 2,4F

24g 24p24D 24F 24G
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The process can be continued but it is obvious that the number of ~ wavefunctions

The Quantum

possible terms grows very rapidly. Defect Method

Many electron
systems

Scattering theory
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