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1.3

Fermi's Golden Rule

Time dependent perturbation theory gives us Fermi's Golden Rule

Wba =
dPba

dt
= 2π| 〈Ψb|V |Ψa〉 |2.

which describes a transition from state a to state b caused by a
perturbation V.
So if we know V and the wavefunctions we can calculate the
transition probability.
Examples are

• Oscillator strengths V = r

• Born approximation for Coulomb potential V = 1/r

So how do we get the wavefunctions?
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1.4

Hydrogen wavefunctions

The Schrödinger equation for a central potential is[
− h̄2

2µ
∇
2

r +V (r)

]
ψ(r) = Eψ(r).

Solutions of the hydrogenic Schrödinger equation (V (r) =−z/r)
in spherical coordinates are

Ψ = Ylm(θ,φ)Rnl(r).

• �nite mass gives µ = meM/(me +M)

• nlm are the quantum numbers

• n > l , m =−l . . . l
• n and l are integers

• l = 0 1 2 3 4 . . .
s p d f g . . . .

• Ylm are spherical harmonics

• Rnl are the radial functions (Lagrange polynomials)

The angular functions give us selection rules.
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1.5

Negative energies

Setting u = rR the radial equation simpli�es to[
−1

2

d2

dr2
+
l(l +1)

2r2
+V

]
u =

E

2
u.

atomic units (e = h̄ = m = 1), E in Rydberg units
Hydrogenic V =−z/r . If ρ = zr and ε =−λ2 = E/z2, gives[

d2

dρ2
− l(l +1)

ρ2
+

2

ρ
−λ

2

]
u = 0.

So all hydrogenic atoms satisfy the same wave equation provided
we decrease the size of the atom by a factor z and at the same
time increase the ionization energies by a factor z2.
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1.6

Hydrogen wavefunctions

What do the radial wavefunctions look like?
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1.7

Expectation values

Now we have them we can calculate things with them

〈r〉nlm =
n2

z

{
1+

1

2

[
1− l(l +1)

n2

]}
〈
r2

〉
nlm

=
n4

z2

{
1+

3

2

[
1− l(l +1)−1/3

n2

]}
〈
1

r

〉
nlm

=
z

n2〈
1

r2

〉
nlm

=
z2

n3(l + 1

2
)〈

1

r3

〉
nlm

=
z3

n3(l(l + 1

2
)(l +1)

and oscillator strengths/photoionization cross sections

fif =
2∆E�

3
| 〈φf |r |φi 〉 |2 σν ∼

df

dE

oscillator strengths independent of z
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1.8

Positive energies

Let ε = k2, l = 0 and z = 0 then

d2u

dρ2
=−k2u

solutions are e±ikρ or coskρ,sinkρ. A general solution is a linear
combination

u = Asinkρ+B coskρ

or
u =

√
A2 +B2(cosδφs + sinδφc).

(writing φs for the sine and φc for the cosine solutions) and

tanδ = B/A.



Atomic data

Keith Butler

A brief overview

Introduction

Hydrogen
wavefunctions

The Quantum
Defect Method

Many electron
systems

Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
energies

1.9

Thus
u =

√
A2 +B2 sin(kρ+δ).

δ is called the phase shift. We can �nd A and B if we know the
function and its derivative at some value of ρ = ρ0

u(ρ0) = Asin(kρ0)+B cos(kρ0)
u′(ρ0) = Acos(kρ0)−B sin(kρ0)

Once we have A and B we have the wavefunction from ρ0 to ∞.
For l 6= 0 but still with z = 0 kρ is replaced with (kρ− lπ

2
). The

full Coulomb equation then has(
kρ− 1

k
ln2kρ− lπ

2
+arg(l +1− i

k
)

)
More complicated but still just sine and cosine.
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1.10

Energy normalized wavefunctions

There is continuity from bound states n→∞ to the free states E = 0
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1.11

The Quantum Defect Method

For hydrogen-like ions, the energy levels are En =−RHz2/n2
RH Rydberg constant for H (109677 cm−1)
Observations show that for more complicated systems the energies
are

En =− Rz2

(n−µnl)2
.

The Rydberg constant is

R =
R∞(= 109737.312cm−1)

1+1/1836∗AW

• Atomic weight (AW) because of reduced mass main

• quantum defect µnl slowly varying function of the energy (E ),

• large for small values of l

• large l hydrogenic, µnl small
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1.12

Seaton (1958) shows that the phase shift at positive energies is
related to the quantum defect at negative energies via

δl = πµl

and that bound states can occur at energies where

tan[π(ν+µ)] = 0

i.e. ν+µ is an integer
This illustrates the continuity of physical variables across
ionization thresholds. It can be put to practical use.

• bound state energies give quantum defects. Use to

• infer the energies of unobserved bound state energies

• deduce values of phase shifts - photoionization
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1.13

Quantum defects for C IV s states. The ionization energy is
520178.4 cm−1 (Moore C.E., NSRDS-NBS 3, Sect. 3)

nl E(cm−1) n∗ µ
2s .00 1.837 .163
3s 302849.00 2.842 .158
4s 401348.09 3.844 .156
5s 445368.50 4.844 .156
6s 468784.00 5.845 .155
7s 482706.00 6.845 .155
8s 491650.81 7.845 .155
9s 497736.69 8.845 .155
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1.14

Quantum defects for C IV
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1.15

• Can go in both directions so that calculated or observed
phase shifts may be used to �nd bound state energies etc.

• Theory can be used to calculate oscillator strengths cheaply
(Bates and Damgaard, 1950)

• Functions will not be correct for small r but integral weights
large r

| 〈φf |r |φi 〉 |2 ≡
∣∣∣∣Z φ

∗
f rφi dr

∣∣∣∣2
• Method works well for one electron systems and cases in
which a single electron does all the work.
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1.16

Quantum defect oscillator strengths for C IV.

Lower Upper fQD fRM
2s 2p .2857 0.2855
2s 3p .1993 0.203
2s 4p .0600 0.061
2s 5p .0265 0.0270
2s 6p .0142 0.0145
2s 7p .0085 0.0087
2s 8p .0055 0.00565
2s 9p .0038 0.0039
2s 10p .0029 0.0028
2s 11p .0022 �
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1.17

Photoionization Cross Sections

Can be applied to photoionization cross sections (Burgess and
Seaton 1964)
Extrapolate the known quantum defects to positive energies to
obtain estimates of the phase shifts.
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1.18

Comparison QDT vs. R-matrix for C IV
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1.19

Helium - Two electron atoms

The next simplest system is an atom with two electrons, Helium.
The Hamiltonian[

−1

2
∇
2

r1
− 1

2
∇
2

r2
− Z

r1
− Z

r2
+

1

r12

]
Ψ(r1,r2) = EΨ(r1,r2).

Since the Hamiltonian does not change when r1 and r2 are
interchanged

Ψ(r1,r2) =±Ψ(r2,r1).

When the + sign applies Ψ is said to be space symmetric, denoted
by Ψ+. The − holds for space antisymmetric functions Ψ−.
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1.20

Must take spins into account so

Ψ(q1,q2) = Ψ(r1,r2)χ(1,2).

These must be antisymmetric (Pauli) - gives singlets and triplets.
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1.21

If the total orbital angular momentum is L with eigenvalues L,ML,
an energy term with a particular value of S and L is normally
written 2S+1L since for light elements LS-coupling is a good
approximation. Here �rst the l s are coupled to give L and s s to
give S and then the sum L+S is taken. The term has multiplicity
(2S +1) and L is denoted by a letter

L = 0 1 2 3 4 . . .
S P D F G . . . .

When relativistic e�ects are taken into account, the levels of the
terms are subject to �ne-structure splitting. L,S are then no longer
good quantum numbers, constants of the motion, but the total
angular momentum J = L+S is. Such a level is represented by

2S+1LJ .
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1.22

Independent Particle Model

What are the energy levels of Helium.

• Three-body system so must approximate.

• treat the two electrons separately

• couple them later.

• Very simplest is to H = H0 +H ′ with

H0 = −1

2
∇
2

r1
− Z

r1
− 1

2
∇
2

r2
− Z

r2
≡ h1 +h2

H ′ =
1

r12
.

• h1 and h2 are both hydrogenic
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1.23

• Energies are

E 0

n1n2
=−Z 2

2

(
1

n2
1

+
1

n2
2

)
• ground state energy −Z 2 =−4 a.u. observed −2.90 a.u.

• singlet and triplet states are degenerate.

• must include 1/r12

Next simplest is

H0 = −1

2
∇
2

r1
+V (r1)−

1

2
∇
2

r2
+V (r2)≡ h′

1
+h′

2

H ′ =
1

r12
− Z

r1
−V (r1)−

Z

r2
−V (r2).

We have simply rearranged the terms.

• Guess V (r) =−(Z − s)/r ≡ Ze/r .

• Screening constant s allows for the electron shielding

• Energies are hydrogenic with e�ective charge Ze .

• Ground state −Z 2

e . s = 0.3 reproduces observed value

• Just a �t
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1.24

N-electron systems

The Hamiltonian for an N-electron system is a straightforward
generalization of that for Helium, namely

H =
N

∑
i=1

(
−1

2
∇
2

ri
+
Z

ri

)
+

N

∑
j>i=1

1

rij
.

and the N-electron wavefunction

Ψ(q1,q2 . . .qN) = Ψ(r1,r2 . . .rN)χ(1,2, . . .N)

must be antisymmetric so that the Pauli exclusion principle is
satis�ed. The independent particle approximation can be made for
the N-electron system in the same way as for the two-electron
system. Each electron then moves in an e�ective potential that
describes the average e�ect of its interaction with the other
(N−1) electrons. They in turn `screen' the nuclear charge.
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1.25

• 1/r12 behaves like 1/r>

• potential looks like

V (ri ) =−Z

ri
+S(ri ).

• ri largest r> = ri and

V (r) =−Z

ri
+

N−1

∑
j=1

1

ri
=−Z −N+1

ri
.

• ri is smallest

V (ri )≈−Z

ri
+

〈
N−1

∑
j=1

1

rj

〉
=−Z

ri
+a constant

• the electron �sees� full nuclear charge.
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1.26

In between, S(ri ) will be a complicated function. Bearing these
considerations in mind, we rearrange the Hamiltonian once more

H = HC +H1

HC =
N

∑
i=1

(
1

2
∇
2

ri
+V (ri )

)
≡

N

∑
i=1

hi

H1 =
N

∑
j>i=1

1

rij
−∑

i

(
Z

ri
+V (ri )

)
= ∑

j>i=1

1

rij
−∑

i

S(ri ).

The advantage in doing this is that H1 is now (hopefully) small
and can be treated using perturbation theory.



Atomic data

Keith Butler

A brief overview

Introduction

Hydrogen
wavefunctions

The Quantum
Defect Method

Many electron
systems

Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
energies

1.27

• Each orbital solution of

[−1

2
∇
2

r +V (r)]ψnlml
(r) = Enlψnlml

(r)

• looks like

ψnlmlms (q) = Rnl(r)Ylml
(θ,φ)χ 1

2
,ms

• No two electrons can have same set of 4 quantum numbers
(Pauli).
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1.28

Con�gurations, shells, sub-shells

• Total energy is sum of one-electron contributions

E = ∑
nl

Enl ,

• Distribution of the electrons among the orbitals is a
con�guration, written as (n1l1)

t1(n2l2)
t2 . . .(nνlν)

tν .

• E.g. Ground con�guration (the energetically lowest) O is
1s22s22p4

• Abbreviated to 2p4 with 2 1s, 2 2s and 4 2p electrons.

• This is based on central �eld approximation.

• The electrons are indistinguishable. No 1s electron.

• Electrons with same value of nl belong to same sub-shell
(equivalent)

• same n belong to same shell.

• two values of ms , (2l +1) values of ml give maximum
occupancy of a sub-shell is 2(2l +1). e.g. 2p6
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1.29

Con�guration Interaction

• independent particle model good =⇒ single con�guration
good.

• H1 mixes con�gurations and terms with same L and S values.

• e.g. ground state of He I is Ψg = 1s2 1S. Corrections give

Ψg = a1(1s2)+a2(1s2s)+a3(1s3s)+ · · ·+ak(2s2)+ · · ·

with ∑
∞
i=1

a2i = 1.

• 1s2s wavefunction will be

Ψ1s2s = b1(1s2)+b2(1s2s)+b3(1s3s)+ · · · .

• Independent particle model and single con�guration make
sense if single coe�cient is close to 1.
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1.30

Wavefunctions are optimized

• Con�guration interaction uses

Ψ = ∑
i

ciΦi .

• 1. Choose a set of the Φi .

• 2. Choose a set of one-electron orbitals (adjustable
parameters).

• 3. Calculate the Hamiltonian matrix Hij = 〈Ψi |H|Ψj〉.
• 4. Diagonalize for eigenvalues En and coe�cients ci .

• 5. Calculate the weighted sum ∑
N
n=1

gnEn, gn is weighting
factor, e.g. the statistical weight or 1.

• 6. Go back to 2 and adjust the parameters until this sum is a
minimum.
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1.31

• Sum over i runs over all bound and free states. Must be
truncated to �t into computer. Balance between doable and
desireable.

• Normally LS-coupling =⇒ low-Z ions.

• Relativistic e�ects via perturbation theory

• GRASP is fully relativistic but more di�cult.

• Calculations along isoelectronic sequence (e.g. C I, N II,
O III. . .) cheaply if �algebra� is stored.
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1.32

Look out for

• Cowan and ZEALOT. Matrix elements Hij are sums of
integrals. Least squares �ts to observed energies give these
integrals and then radiative data (Cowan). Kurucz uses this.
The data are ideal for opacity calculations because of
completeness. Data for individual ions and transitions can
also be good. ZEALOT works similarly, used by Fawcett for
ions of iron.

• Multi-Channel-Hartree-Fock (MCHF). A generalization of the
Hartree-Fock approach to con�guration interaction. The
one-electron orbitals are adjusted to give a self-consistent
solution to the problem. Gives best solution for any given set
of con�gurations and one-electron orbitals. Atomic data are
of high-quality.
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1.33

• CIV3 and AUTOSTRUCTURE. Major di�erence is the radial
wavefunctions. In CIV3, these are analytical `Slater-type
orbitals' (STOs)

Pni li (r) = ∑
j

bij
(2ξij)

lij+
1

2√
2lij !

r lij e−ξij r

essentially asymptotic hydrogenic functions. Radial integrals
computed extremely quickly.
In AUTOSTRUCTURE potential chosen is
Thomas-Fermi-Dirac-Amaldi which `smears' out the
contributions of the electrons. They are used in the
calculation of `target' wavefunctions for scattering
calculations to which we turn next.
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1.34

Cross sections

Consider a typical experiment. Ideally, we have a uniform,
monoenergetic beam consisting of N particles per unit time per
unit area perpendicular to the beam. If the density in the target n
is low enough in each collision only a single particle is involved. If
the target is thin enough multiple scatterings will not occur. dN ′

is the number of particles scattered into the solid angle dΩ
centred about a direction Ω
The number of scattered particles will be proportional to N, n and
dΩ with a constant of proportionality de�ned by

dN ′ = Nn
dσ

dΩ
(θ,φ)dΩ,

the di�erential cross section. It is the ratio of the number of
scattered particles dN ′ to the �ux of incident particles with respect
to the target and has the dimensions of an area.
The total cross section is the integral of the di�erential cross
section over all angles

σtot =
Z

dσ

dΩ
(θ,φ)dΩ
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1.35

Simple scattering theory

Scattering by a potential allows us to de�ne such quantities as the
cross section, the collision amplitude and so on. We begin with
the Schrödinger equation in its time dependent form[

−1

2
∇
2 +V (r)

]
Ψ(r, t) = i

∂

∂t
Ψ(r, t).

We assume V (r) to be real and time-independent so that

Ψ(r, t) = ψ(r)e−iEt

and [
−1

2
∇
2 +V (r)

]
ψ(r) = Eψ(r).

E , the energy is written as 1

2
k2 = 1

2
v2 and we also assume that V

is of short range (atoms only, no Coulomb potential). For large r
we have to solve

(∇2 +k2)ψ(r) = 0

and we write
ψ(r) ∼

r→∞
ψinc(r)+ψsc(r).
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1.36

This representation is intended to describe the situation shown

Incoming plane wave Outgoing spherical wave

Target

A monoenergetic incident beam strikes the target atom. The
beam is scattered by our target particle into a solid angle dΩ
where it is detected. As with water waves striking a rock, the
outgoing waves will be spherically symmetric and di�erent
fractions will be scattered into the di�erent directions.
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1.37

The monoenergetic incident beam can be described by the plane
wave

ψinc(r) = Ae ik·r

(A is a constant) while the scattered beam is

ψsc(r) = Af (k,θ,φ)
e ikr

r
.

f (k,θ,φ) is known as the scattering amplitude. The di�erential
cross section is

dσ

dΩ
= |f (k,θ,φ)|2

with a total cross section

σtot =
Z

dσ

dΩ
dΩ.
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1.38

The close-coupling expansion

The close-coupling expansion is an attempt to mimic the
scattering experiment as closely as possible. H is simplest example.

• stationary target atom has wfn. ψ(a|r1) with a≡ nlm

• scatters electron with wavefunction F (a|r2).
• close-coupling expansion is

Ψ(r1,r) = ∑ψ(a|r1)F (a|r).

• each pair is a channel, atom and electron in de�nite states
during the collision.

• bound states retain their character during the collisional
process

• sum so that all channels on equal footing

• note the similarity to CI



Atomic data

Keith Butler

A brief overview

Introduction

Hydrogen
wavefunctions

The Quantum
Defect Method

Many electron
systems

Scattering theory

The close-coupling
expansion

R-Matrix method

Intermediate
energies

1.39

Resonances

Channel mixing gives resonances
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1.40

The close-coupling equations may be derived as follows. The
functions satisfy the identityZ

ψ
∗(a|r1)[H−E ]Ψ(r1,r)d

3r1 = 0

since HΨ = EΨ. A bit of algebra later. . .

[∇2 +k2a ]F (a|r) = 2∑
a′
Vaa′(r)F (a′|r)

• E = Ea + 1

2
k2a .

• 1

2
k2a is the channel energy

• if positive the channel is open, negative the channel is closed.

• Vaa′ is shorthand for
R

ψ∗(a|r1)Vψ(a′|r1)d3r1
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1.41

• set of coupled di�erential equations

• with exchange

[∇2 +k2a ]F±(a|r) = 2∑
a′

[Vaa′(r)±Waa′(r)]F
±(a′|r).

• exchange much more complicated as

Waa′(r)F (a′|r) =
Z

ψ
∗(a|r1)[H(r1,r2)−E ]F (a′|r1)d3r1ψ(a′|r).

• F under the integral =⇒ coupled integro-di�erential
equations.

• Solve using standard techniques

• Exchange small for large r

• Exchange small for large l

• Exchange small for large z

• Exchange small for large E
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1.42

Weak Coupling

We can now look at simpler approximations. Remember

•

F (j , i) ∼
r→∞

e iki ·rδji +
e ikj r

r
f (j , i)

•
[∇2 +k2j ]F (j , i |r) = 2∑

j ′
Vjj ′(r)F (j ′, i |r). (1)

• now have two boundary conditions

• k2j large so

F (j , i)' e iki ·rδji

an incoming plane wave. Put this into the RHS of (1) to
obtain the �rst Born approximation

[∇2 +k2j ]FB1(j , i) = 2Vji (r)e
iki ·r.

•
fB1(j , i) =− 1

2π
(kj |Vji |ki )

• How large must the energy be? Who knows.
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1.43

Distorted Wave

• distorted wave approximation assumes all except for Vji are
negligible. Have

[∇2 +k2i ]F (i , i) = 2ViiF (i , i)
[∇2 +k2j ]F (j , i) = 2VjjF (j , i)+2VjiF (i , i)

• Solution is

fDW (j , i) =− 1

2π

Z
F (j ,−kj)VjiF (i ,ki )d

3r

where
[∇2−2Vii +k2i ]F (i , i) = 0

F (i ,ki ) ∼
r→∞

e iki ·rδji +
e iki r

r
fDW .

• Distorted wave with exchange � replace V by V ±W

• Can also use Coulomb functions for ions
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1.44

Bethe approximation

• Start with DW approximation

σ(i → j) =
1

4π2gi

kj

ki

Z
|(kj |Vji |ki )|2 dkj

• note that

Vji =− 1

r2
+

1

r12
.

• expand 1/r12
1

r12
=

1

r2
+
r1 · r2
r3
2

.

• Integrate over r1,

Vji (r2) =
r2 · (j |r1|i)

r3
2

• cross section is

σ(i → j) =
1

4π2

kj

ki

Z
|(kj |r2/r32 |ki )|2 dkj ×

1

3gi
|(j |r1|i)|2
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1.45

• Oscillator strength is

1

3gi
|(j |r1|i)|2 =

fji

2∆E

• free-free Gaunt factorZ ∣∣∣∣(kj ∣∣∣∣ r2r3
2

∣∣∣∣ki )∣∣∣∣2 dkj =
32π4

kikj
√
3
g(kj ,ki ).

• so cross section is

σ(i → j) =
4π2

k2i

fji

∆E
g(kj ,ki ).
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1.46

• Similar for photoionization (cross section a(Ek))

σion(i) =
2

k2i α
√
3

Z 1

2
k2i −I

0

a(Ek)g(kj ,ki )dEk
I +Ek

• Plane waves (Born) gives Bethe

g =

√
3

π
log

(
ki +kj

|ki −kj |

)
.

• Seaton and van Regemorter use g as �t parameter

• Only good when fij large

• Do not use if possible
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Partial Wave Theory

Incoming plane wave Outgoing spherical wave

Target

• Convenient to use outgoing and incoming spherical wave
functions � problem is more symmetric

• waves look like

φ±(klm|r) = k−1/2Ylm(r̂)
e±(kr− 1

2
lπ)

r
.

• normalize (gives S matrix)

ΨS(al2m2|r1,r2) ∼
r2→∞

ψ(a|r1)φ−(kal2m2|r2)

− ∑
a′l ′

2
m′
2

ψ(a′|r1)φ+(ka′ l
′
2
m′

2
|r2)S(a′l ′

2
m′

2
,al2m2) (2)
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1.48

• then

f (a′k̂a′ ,ak̂a) =
2πi

(kaka′)
1

2

∑
l ′
2
m′
2

l2m2

Y ∗
l2m2

(k̂a)Yl ′
2
m′
2

× (k̂′a)i
l2−l ′2T (a′l ′

2
m′

2
,al2m2)

(3)

and T (α′,α) = δ(α′,α)−S(α′,α) is the transmission matrix.
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1.49

General case

• Couple l1,l2, include spin and generalize

• Cross section is

Q(αiLiSi → αjLjSj) =
π

k2i
∑
LSπ

li lj

(2L+1)(2S +1)

2(2Li +1)(2Si +1)

∣∣T LSπ
ji

∣∣2
• collision strength is

Ω(i , j) =
(2Li +1)(2Si +1)

π
k2i Q

• convolve with Maxwellian

qij = ne
8.631×10−6

wiT 1/2
Υij .

• Υij =
R

∞

0
Ω(x)e−xdx (x = E/kT ) varies slowly
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1.50

The K matrix

• computers don't like complex numbers

• so use

φ(cs)
(klm|r) = k−1/2Ylm(r̂)

1

r

(
cos

sin

)
(kr − 1

2
lπ)

• K given by

ΨK ∼ ΦS(α)+∑
α′
K (α′,α)ΦC (α).

• 2iΦs ∼ Φ+−Φ− and 2Φc ∼ Φ+ +Φ− so

S =
1+ iK

1− iK

• With only one channel K = tanδ, the phase shift.
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1.51

Accuracy of calculation

• Depends on target

• More levels (should be better)

Figure: Target energies for Fe21+ (Badnell, Gri�n and Mitnik, 2001)

• Agreement between observed and calculated energies

• Agreement between length and velocity f-values

• Agreement with other f-values
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1.52

R-Matrix method for Hydrogen

• seek solutions for r ≤ a (R-matrix boundary). R-matrix box.

• a is �nite so this is a bound state problem

• Equations solved once for each value of LS .

Radial Schrödinger equation for H is

(− d2

dr2
+
l(l +1)

r2
− 2

r
−E )FE (r) = 0

with boundary condition

F ′E (a) = 0.

Solutions only for a discrete set of energies E = ek written as fk(r).
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1.53

Table: Eigenvalues and functions for H, l = 0 (Yan & Seaton, 1985)

k ek fk(a)
1 −1.007362 0.136186
2 −0.232335 −0.719054
3 1.093783 0.688598
4 3.335493 −0.661618
5 6.400272 0.650858
6 10.272967 −0.645343

• fk used to expand FE (r)

FE (r) =
∞

∑
k=1

fk(r)AkE

• some more algebra shows

FE (a) = R(E )F ′E (a)

• R-matrix is

R(E ) =
∞

∑
k=1

fk(a)(ek −E )−1fk(a).

• If we know fk and ek we can calculate FE at all energies.
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1.54

Matching at r = a: Bound states

• look for vector X so that at r = a

F = PX

F ′ = P ′X

• F = RF ′ so
PX = RP ′X

• non-trivial solutions only when

det[P−RP ′] = 0.

• R comes from inner region, P from outer.

• calculate determinant on a �xed energy mesh, scan for roots
with X have physical wavefunctions and energies from r = 0
to r = ∞.
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1.55

Matching at r = a: Free states

For all channels open
P = S +CK

S and C are the sine and cosine-like Coulomb functions.

F = RF ′ at r = a

which gives immediately

K = (C −RC ′)−1(S−RS ′).

The same can be done when some channels are closed, the
principle is the same.
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1.56

Summary

• Diagonalisation of H gives R at any energy.

• Matching to the Coulomb functions at r = a gives K or
bound states.

• K is enough for collisional data.

• radiative need

(Ψ|r|Ψ′) = (Ψ|r|Ψ′)I +(Ψ|r|Ψ′)O

• inner integrals are sums of

(u|r|u′)

pre-calculated and stored.

• outer region Ψ are Coulomb functions and calculated rapidly
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1.57

Some examples

Figure: Low energy photoionzation of C+. (Kjeldsen et al, 1999. The
solid curve is from Nahar (1995)
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1.58

Some examples (Champeaux et al, 2003)
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1.59

Dielectronic recombination

• Resonances in photoionization is dielectronic recombination

• Can also combine f-values and background cross sections

Figure: Zatsarinny et al (2003)
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Relativistic E�ects

• Full relativistic - DARC (Norrington and Grant)

• BP R-Matrix (Berrington et al)

• Breit-Pauli - DW packages (various)

• ICFT - Algebraic transformation (Badnell)

Figure: Badnell & Gri�n, 2001
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1.61

Intermediate energies

• at low energies � close coupling
• at high energies � Born
• at intermediate energies - CCC, RMPS

There's nothing new

Figure: Bray and Stelbovics, 1995
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1.62

Convergent close coupling (CCC) and R-matrix with pseudostates
(RPMS) di�er in detail but both solve the problem in the same
way. RPMS has an advantage compared to CCC since, as in the
normal R-matrix method, the diagonalization of the Hamiltonian is
done once and then cross sections at a large number of energies
are obtained by matching the external functions to those from the
inner region. This allows the resonances to be delineated which
can only be done at great expense with the CCC method.
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1.63

Intermediate energy calculations for H

Figure: Bartschat et al, 1996
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Summary

Radiative data

• quantum defect good for 1 electron systems
• CI calculations (much) better
• MCDF best for oscillator strengths
• There are good and bad calculations
• Photoionization from R-matrix method

Collisional data

• Bethe only if nothing else
• Born only very high energies
• Distorted wave not good for low z
• R-matrix good for low temperatures
• CCC and RMPS best
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Addendum: Determination of possible terms

Note that for a closed sub-shell, only a 1S term is possible since
ML = ∑imli = 0, MS = ∑imsi = 0. For non-equivalent electrons,
the exclusion principle is automatically satis�ed, so that we can
simply use the addition rules for angular momenta

J = |J1−J2|, . . . , |J1 +J2|

for L and S separately. Consider two electrons with l1, l2. Then

L = |l1− l2| . . . |l1 + l2|

and since s1 = s2 = 1

2
, S = 0 or 1. E.g. for npn′p, l1 = l2 = 1 and

L = 0,1, or 2. Thus the possible terms are

1,3S,1,3P,1,3D.
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If l1 = 1 and l2 = 2, (npn′d), on the other hand, L = 1, 2, 3 and
the possible terms are

1,3P,1,3D,1,3F.

To work out the terms for three electrons, we start from the
known two electron terms and then systematically add the third
electron, using (65) once more. For example, consider npn′pn′′d .
The �rst two electrons give the terms listed in (66). The d
electron has l = 2,s = 1

2
. If we add this to the 1S term

(L′ = S ′ = 0), we �nd L = 2,S = 1

2
, a 2D term.
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In the same way, adding the n′′d electron to

1P gives 2P, 2D, 2F
1D gives 2S, 2P, 2D, 2F, 2G
3S gives 2,4D
3P gives 2,4P, 2,4D, 2,4F
3D gives 2,4S, 2,4P,2,4D, 2,4F, 2,4G

The process can be continued but it is obvious that the number of
possible terms grows very rapidly.
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