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Spectral line broadening

o time dependent Schrédinger equation is

oV
Ig = HV

o If H is time independent. One solution is

—iEgt

f(t) =wre

o ., E; are an eigenvector and eigenvalue of H.

® power spectrum

I(@) o | / £(t)exp(ioot) dt|?

e proportional to square of the Fourier transform
e a delta function 8(®— p)
e use angular frequencies so E = hwyg

e infinitely narrow line — no interaction with outside world.
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e wave train is now finite

(@) o<

sin[t(®— )/2] |2

(0—0)/2
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o Lorentz: distribution of mean time t. between collisions ok broaderine

P(t) dt = exp(—1/1c) dt/1c

Keith Butler

e spectrum is then

I(w)«/:

sinfo(0—00) 2" o

(0—ay)/2
or a Lorentz profile
1 The Stark effect
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Radiative Iifetime Stark broadening
Keith Butler

e lifetime due to radiative transitions is
-1 _ -
r=tt= ZAJ'
1

Aji are Einstein coefficients

e total width is sum of two terms, for upper and for lower

e profile is Lorentz

e Must add Doppler broadening = Voigt profile ?
The standar:
model
= eV p—
H(a, V) = E/ % Z:pr:)xi':nution
) w(v—y)>+a
with v = (Vﬁ‘g’), y= AATVD' a= (m) and Doppler width
1
KT\ 2
avo = (3F)

e is not correct in principle, radiator moves

e is a good approximation though



The Stark effect Stark broadening
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o electric field gives potential
o(r) =

so Hamiltonian is

H=— Zg’ +V+E, Zz,

i=1 M i=1

Time-independent perturbation theory gives first-order energy

. The Stark effect
correction

The Impact
Approximation

N
AEWM = E,(V,] Y z|V,)

z is odd, W, is either even or odd =— zero.

second order term gives quadratic Stark

W, YNz |Wan))?
AE(2) — Ez 2 ‘< i=1
n ( ) 'rgn En _ Em

For hydrogen-like simple perturbation theory not applicable

(energies degenerate). Linear effect.
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Stark broadening
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e high n also linear effect.

4d 4

4s
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e line-broadening and level dissolution linked



The standard model

e few radiators in a sea pertubers

e radiators do not interact with each other

e radiator has no effect on the perturbers (no back-reaction)

e can use “Classical path approximation”

e Note density cannot be too low.

o dipole interaction so transition probability is
4w
3hc3

[(Fldli) .

o in far wings correct profile must join smoothly onto free-free
opacity
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total power is weighted sum over all possible initial states

403

F()
 varies slowly so profile is

F(o) = ;6(w—m,f)|<f|d|i>\2p;.
Fourier transform is

o(s) = /w e 9% F (@) do
=Y e |(f|d|i)[*p;

i
with ®(—s) = ®(s)*, the autocorrelation function.

monochromatic wave = constant ¢

® =0 implies system at time (t +s) completely uncorrelated

with that at time t.

direct connection between time taken for autocorrelation
function to reach zero and the line broadening.
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Stark broadening
Keith Butler

duration of a collision important.
®(s) goes to zero shorter than collison time motion of
perturbers is irrelevant — quasistatic approximation
short times imply large frequency differences so applies to line
wings
collision time is short compared to time needed for ®(s) to go
to zero = impact approximation

quasistatic for protons etc, impact for electrons The Stark effect

. . . he standard
total broadening convolution of two profiles model

Flw) = /Ow P(e)l(o,€;) de;

ions produce electric field distribution P(g;) (e.g. Holtsmark)
electron profile is /(, ;)

must average over field configurations



Convolution of ion field and electron profile
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Figure: Schoening, 1988. ALPHA is the normal field strength.
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Stark broadening

The Impact Approximation

Keith Butler

e Baranger showed line profile proportional to
(1-5:5¢)

e S is the scattering matrix, is complex

e the line has a shift and a width

e use collision theory to get S gives line profile e.g. Seaton,
1987 uses R-matrix theory (see figure)

The Stark effect

T T T T T T T T The standard
4d.t 5s  5p.dfg model
| = The Impact
Approximation

Re S
2
—

i

Im S

-0.5

( i
of } i \,\/\U vk APV V\Jfl’ﬁ%

1 L L | I I | |
0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455

E




Quadratic Stark effect

ionic contribution negligible
Dimitrijevic and Konjevic give the following formula

1.1 30\ 2
o —6 - *2 _ q2 g
Av =6.64 x 10 (0.9 = ) [2 <2Z> (2 =1 —| 1)]

Seaton gives

AV =6.6x10" (1 3-) ZR2 ”e

R? are dipole integrals - from f-values

many calculations from Sahal-Bréchot and co-workers
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Hydrogenic ions

e Griem “Standard Theory"

e Vidal, Cooper Smith “Unified Theory”. lons static. No impact
approximation for electrons.

e lon dynamic effects?
o MMM - soluble model

e Gigosos et al, Talin et al, Monte Carlo method - are best but
limited to low n

o Stehle and Hutcheon - extensive tables - not good at very
high densities
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Stark broadening

An example
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Hg from Stehle and Hutcheon (1999) N, = 3.164 x 10,
T = 10000 K
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