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Overview

• The thermal radiation transport equation in static media

• The equations of thermal radiation transport

• The analytic equilibrium-diffusion limit

• Asymptotic-preserving discretization

• Angular, energy, spatial, and temporal discretization

• Solution of the transport equation
• Source Iteration
• Diffusion-Synthetic Acceleration (DSA)
• Linear Multifrequency Grey Acceleration (LMFGA)
• Preconditioned Krylov adaptation of LMFGA
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Overview

• Thermal radiation transport equation with non-relativistic material motion

(u/c < 0.01).

• The physical effect of material motion on the lab-frame equations.

• The comoving frame.

• The relativistic lab-frame transport equation.

• The O(u/c) lab-frame transport equation.

• A simplified lab-frame transport equation for continuum transport.

• The nonrelativistic radiation-hydrodynamics equations

• The nonrelativistic radiation-hydrodynamics equations in generic form.

• Example solution algorithm for the radiation-hydrodynamics equations.

• Future efforts.
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Basic Equations

• The equations of thermal radiation transport consist of a transport

equation for the angular intensity I(
−→

r ,
−→

Ω , E, t):

1

c

∂I

∂t
+

−→

Ω ·
−→

∇ I + σtI =
σs

4π
φ+ σaB(T ) ,

and an equation for the material temperature T (
−→

r , t):

Cv
∂T

∂t
=

∫

∞

0

σa[ φ− 4πB(T ) ] dE .
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Basic Equations

• The angular intensity has units of

(energy/area− time− steradian− energy),

•

−→

Ω is the photon direction vector,

• E = hν (energy) is the photon energy,

• c (length/time) is the speed of light,

• σt(
−→

r , E, T ) (length−1) is the total macroscopic cross section,

• σs(
−→

r , T ) (length−1) is the Thompson macroscopic scattering cross

section,

• φ(
−→

r , E, t) (energy/area− time− energy) is angle-integrated

intensity,

• Cv(
−→

r , T ) (energy/volume− temperature) is the material heat

capacity,

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 5/86



Basic Equations

• B(E, T ) (energy/area− time− steradian− energy) is the

Planck function:

B(E, T ) =
2E3

h3c2

[

exp

(

E

kT

)

− 1

]

−1

,

• h is Planck’s constant,

• k is Boltzmann’s constant

• There are two other basic equations associated with the transport

equation: the radiation energy and momentum equations.
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Basic Equations

• The radiation energy equation is obtained by integrating the transport

equation over all directions and energies:

∂E

∂t
+

−→

∇ ·
−→

F =

∫

∞

0

σa[ 4πB(T ) − φ ] dE .

where the radiation energy density (energy/volume) is given by

E ≡
1

c

∫

∞

0

∫

4π

I
(

−→

Ω , E
)

dΩ dE ,

and the radiation flux (energy − area− time) is given by

−→

F ≡

∫

∞

0

∫

4π

−→

Ω I
(

−→

Ω , E
)

dΩ dE .
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Basic Equations

• Note from the definition of E that the radiation intensity integrated over

angle and energy (energy − area− time), which we denote by ϕ, is

equal to cE.

• The radiation energy is an energy balance equation stating that the time

rate of change of the radiation energy in a differential volume is equal to

the energy sources minus the sinks.

• The radiation momentum equation is obtained by first multiplying the

transport equation by
−→

Ω /c and then integrating over all directions and

energies:

1

c2
∂
−→

F

∂t
+

−→

∇ ·
=⇒

P +

∫

∞

0

σa

c

−→

F dE = 0 ,
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Basic Equations

• where the radiation pressure (energy/volume) is given by

Pi,j ≡
1

c

∫

∞

0

∫

4π

ΩiΩjI
(

−→

Ω , E
)

dΩ dE ,

• The radiation momentum equation is a balance equation stating that the

time rate of change of the radiation momentum in a differential volume is

equal to the momentum sources minus the sinks.

• When we include material motion, the transport and hydrodynamics

equations will be coupled.

• The radiation energy and momentum equations will be part of total

(radiation plus material) energy and momentum conservation equations.
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Nonlinearities

• Note that the radiative transfer equations have nonlinearities arising only

from the temperature dependence of the material property coefficients and

the Planck function.

• The heat capacity is generally a weak function of temperature, while the

absorption cross sections are strong functions of temperature.

• The radiative transfer equations are generally solved using an approximate

form of Newton’s method.

• The method is approximate in that the non-linearities are usually not

iterated to full consistency, and contributions to the Jacobian from the

material property functions are neglected.

• Stability considerations require linearization of the Planck function but not

the material property functions.
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Connection with Neutronics

• The radiative transfer equations have much in common with the neutron

transport equation.

• The regimes are quite different, but most of the computational technology

developed for neutron transport has been applied over the last twenty

years to the radiative transfer equation both in static media and with

nonrelativistic material motion.

• Because radiative transfer calculations are much more demanding than

neutron transport calculations, this connection has resulted in

improvements in neutron transport methods that might not otherwise have

occured.

• For the case of relativistic material motion, fundamentally new approaches

may be required.
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The Equilibrium-Diffusion Limit

• Under certain realizable physical conditions, the equations of radiative

transfer reduce to a diffusion equation for the material temperature, with

the radiation intensity given by the Planck function evaulated at the

material temperature.

• This limit is known as equilibrium-diffusion limit. It is important because it

often occurs in real systems, and it can be difficult for trnasport

discretizations to accurately treat.

• The equilibrium-diffusion limit can be rigorously derived using an

asymptotic expansion of the radiative transfer solution. The asymptotic

expansion parameter is denoted by ǫ, and the diffusion limit is achieved as

ǫ→ 0.
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The Equilibrium-Diffusion Limit

• The diffusion-limit equations are derived as follows.

• Non-dimensionalize the equations of radiative transfer.

• Identify appropriate non-dimensional physical parameters in these

equations.

• Scale each physical parameter by an appropriate power of ǫ.

• Return the scaled equations to dimensional form.

• Express the intensity and temperature solutions as power series in ǫ.

• Substitute these series into the radiative transfer equations.

• Expand all functions of the temperature in the radiative transfer

equations in ǫ as well.

• Create a heirarchical system of equations for the expansion coefficients

of the intensity and temperature by successively equating all terms

multiplied by each power of ǫ.
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The Equilibrium-Diffusion Limit

• Manipulate these heirarchical equations to obtain the equations satisfied

to leading-order by the intensity and temperature, i.e., the equilibrium

diffusion limit equations.

• After nondimensionalization, the following nondimensional physical

parameters arise:

•
λt,∞

ct∞
, the ratio of the characteristic time between photon interactions to

the characteristic time scale of the intensity and temperature solutions.

•
λ∞

ℓ∞
, the ratio of the characteristic total photon mean-free-path to the

characteristic length scale of the intensity and temperature solutions.

•
λt,∞

λs,∞
, the ratio of the characteristic photon total mean-free-path to the

characteristic photon scattering mean-free-path.

•
CvT∞c

4πI∞E∞

, the ratio of the material internal energy density to the

radiation energy density.
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The Equilibrium-Diffusion Limit

• The scaling is defined as follows:

•
λt,∞

ct∞
→ ǫ2.

•
λ∞

ℓ∞
→ ǫ.

•
λt,∞

λs,∞
→ ǫ.

• The previous scaling implies that
λa,∞

λt,∞
→ 1 − ǫ.

•
CvT∞c

4πI∞E∞

→ ǫ0.
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The Equilibrium-Diffusion Limit

• To leading order, the material temperature satisfies the following equation:

(

Cv + 4aT 3
) ∂T

∂t
−

−→

∇ ·
4aT 3

3〈σt〉

−→

∇ T = 0 ,

where
1

〈σt〉
=

∫

∞

0

1

σt

∂B

∂T
dE

/
∫

∞

0

∂B

∂T
dE .

• The intensity satisfies

I = B(E, T ) .
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Equilibrium-Diffusion Limit Boundary Layers

• If the intensity incident upon a diffusive region is non-Planckian, a

boundary layer will be present in the intensity and temperature solutions

within a few mean-free-paths of the boundary.

• The diffusion solution does not apply within the boundary layer.

• The effective boundary conditions for the diffusion solution on the interior

depend upon the incident intensity.

• A boundary layer analysis must be applied to determine these conditions,

and this unfortunately requires an exact solution of the radiative transfer

equtions within the boundary layer.

• Accurate boundary conditions have been derived using approximate

variational solutions.
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Asymptotic Preserving Discretizations

• A discrete approximation to the radiative transfer equations is said to

preserve the equilibrium diffusion limit if a valid discretization of the

equilibrium diffusion limit equations is obtained when the asymptotic

expansion is applied to the discrete equations.

• The term “valid discretization” simply implies a consistent or convergent

discretization.

• However, it is desirable to have a robust discretization as well.

• Accurate (or at least physically-acceptable) interior diffusion solutions with

unresolved boundary layers are also highly desirable since it can be very

difficult to numerically resolve boundary layrers.

• Achieving asymptotic preservation is almost entirely a function of the

spatial discretization scheme.
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Asymptotic Preserving Discretizations

• For numerical purposes it is important to recognize that in the limit as

ǫ→ 0, the spatial scale length of the asymptotic solutions becomes

infinite with respect to a mean-free-path.

• Thus in highly diffusive problems the spatial scalelength of the solution can

be arbitrarily large with respect to the photon mean-free-path.

• An asymptotic-preserving discretization will yield accurate results in the

diffusion limit as long as the spatial zoning resolves the variation of the

asymptotic solution.

• A consistent but nonasymptotic-preserving discretization will only give

accurate results if the cell widths are small with respect to a

mean-free-path.

• This property can make it completely impractical to use nonasymptotic

preserving schemes highly diffusive problems.
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Angular Discretization

• We use the Sn or discrete-ordinates angular discretization, which is

basically a collocation technique.

• The collocation points correspond to quadrature points on the unit sphere

and the integration over angle is carried out using the quadrature formula.

• The discretized equations are:

1

c

∂Im
∂t

+
−→

Ω ·
−→

∇ Im + σtIm =
σs

4π
φ+ σaB(T ) , m = 1,M,

and

Cv
∂T

∂t
=

∫

∞

0

σa[ φ− 4πB(T ) ] dE .

where

Im = I(
−→

Ω m) , and φ =

M
∑

m=1

Imwm .
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Angular Discretization

• The biggest weakness of the Sn method is non-physical “ray-effects” that

arise in optically thin media with localized sources and are caused by a

finite number of photon directions.

• The only other major discretization technique is the spherical-harmonic or

Pn method.

• The Pn method can be viewed as a Galerkin method based upon a global

spherical-harmonic trial space.

• The Pn method is rotationally invariant and thus has no ray effects, but it

cannot treat rapid variations or discontinuities in the angular intensity.

• For instance, the Pn method badly smears shadows.

• Solution techniques are far more advanced for the Sn method.
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Energy Discretization

• There is only one major energy discretization technique in use, and it is

called the multigroup method.

• The multigroup method can be viewed as a Petrov-Galerkin method with a

piecewise discontinuous trial space and a piecewise-constant weighting

space.

• In particular, the energy domain is divided into G continuous intervals or

groups, with the g’th group corresponding to E ∈ (Eg− 1

2

, Eg+ 1

2

)
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Energy Discretization

• The trial space representation for the intensity is

Ĩ =

G
∑

g=1

Igβg(E) ,

where the g’th basis function, βg , is defined for all g to be zero for all

energies not in group g and can have any desired dependence for

energies within group g, subject to the following normalization:

∫ E
g+ 1

2

E
g−

1
2

βg(E) dE = 1 .
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Energy Discretization

• Integrating Ĩ over group g, we find that Ig represents the integral of the

angular intensity over group g:

Ig =

∫ E
g+ 1

2

E
g−

1
2

Ĩ(E) dE .

• To ensure the correct equilibrium solution for the angular intensity, the

Planck function must also be approximated in terms of the basis functions

as follows:

B̃ =
G
∑

g=1

Bgβg(E) ,

where

Bg =

∫ E
g+ 1

2

E
g−

1
2

B(E, T ) dE .
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Energy Discretization

• One generally defines the group basis function to have either a

dependence corresponding to the Planck function, B, or to the

temperature derivative of the Planck function, ∂B
∂T

, also known as the

Rosselund function.

• The weight functions are defined for all g as follows:

Wg(E) = 0 for all energies not in group g,

= 1 for all energies in group g,

• These weight functions ensure energy balance.
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Energy Discretization

• The multigroup equations take the following form:

1

c

∂Ig
∂t

+
−→

Ω ·
−→

∇ Ig + σt,gIg =
σs

4π
φg + σa,gBg(T ) , g = 1, G,

and

Cv
∂T

∂t
=

G
∑

g=1

σa,g[ φg − 4πBg(T ) ] dE ,

where

φg =

∫

4π

Ig dΩ ,
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Energy Discretization

• where

φg =

∫

4π

Ig dΩ ,

and the multigroup cross sections represent averages over each group as

follows:

σa,g =

∫ E
g−

1
2

E
g+ 1

2

σa(E)βg(E) dE ,

σs,g =

∫ E
g−

1
2

E
g+ 1

2

σs(E)βg(E) dE ,

with

σt,g = σa,g + σs,g .
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Spatial Discretization

• The requirements for spatial discretization schemes are extremely

demanding because:

• Within a specific material region, the cross sections can vary with

energy by many orders of magnitude.

• The cross sections can change across a material interface by many

orders of magnitude.

• Problems often contain both optically-thin regions and optically-thick

regions.

• Optically thick regions may be strongly absorbing or highly diffusive.

• In diffusive regions, the spatial scale-length of the solution can have a

thickness of many mean-free paths (e.g., thousands or more).
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Spatial Discretization

• It is not clear that one can afford to spatially resolve the transport solution

in all regions even with an adaptive scheme.

• The desired characteristics of spatial discretization schemes are as

follows:

• Conservative.

• Second-order accurate.

• Asymptotic preserving.

• Nearly positive and highly damped (robust).

• For the most part, finite-element discontinuous Galerkin (DG) methods

have the first three properties, but lumping of both the gradient and

interaction terms is generally required to achieve sufficient robustness.

• Let us initially consider the asymptotic properties of unlumped DG

schemes.
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Unlumped DG Properties

• The diffusion limit is never preserved with a constant DG trial-space.

• Linear or higher-order trial spaces preserve the diffusion limit on

appropriate meshes.

• For instance, a linear DG trial space preserves the diffusion limit on

triangles and tetrahedra, but a bilinear trial space must be used on

quadrilaterals, and a trilinear trial space must be used on hexahedra.

• This effect is related to the fact that the discrete solution wants to become

continuous in the diffusion limit, and if there are insufficient degrees of

freedom in the trial space when this occurs, the scheme will be unable to

accurately represent the solution and fail.
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Unlumped DG Properties

• DG schemes can yield amazingly accurate interior solutions in the

diffusion limit with unresolved spatial boundary layers.

• However, DG schemes do not yield the correct solution in the cell

containing the unresolved boundary layer.
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Unresolved Boundary Layer I

Quadrilateral-mesh DG solutions with an unresolved boundary layer.
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Unresolved Boundary Layer II

Triangular-mesh DG solution with an unresolved boundary layer.
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Lumped DG Schemes

• Finite-element lumping improves robustness by reducing the span of the

stencil, but this also reduces accuracy.

• In the absence of superconvergence, the order accuracy can generally be

maintained.

• Lumping of the interaction terms (standard mass-matrix lumping) is well

understood and works well in essentially all cases, but lumping of the

gradient terms remains a research topic.

• Considerable effort has been expended in recent years on lumping of

linear-type DG discretizations on non-orthogonal finite-element meshes.

• Lumping is not difficult, but preserving the diffusion limit while lumping is

difficult.
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Lumped DG Schemes

• It has recently been found that non-orthogonal meshes significantly restrict

gradient lumping.

• As a result we expect to see more research on higher-order DG

discretizations since it is conceivable that lumping may not be necessary

with such discretizations.
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Lumped DG Schemes

• Let’s consider a simple example problem to demonstrate discontinuous

Galerkin methods and lumping:

∂f

∂x
+ σf = 0 , for x ∈ [0, h], with f(0) = 1,

• The solution to this equation is f(x) = exp(−σx).

• We will apply the linear discontinuous Galerkin method to this equation.

• The trial-space is defined as follows:

f̃(x) = 1 , for x = 0,

= fL
h− x

h
+ fR

x

h
, otherwise.
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Lumped DG Schemes

• The equations for fL and fR are

1

2
(fR + fL) − 1 +

(

2

3
fL +

1

3
fR

)

h = 0 ,

and

fR −
1

2
(fR + fL) +

(

2

3
fR +

1

3
fL

)

h = 0 .

• Solving these equations for fR, we obtain

fR =
1 − 1

3
σh

1 + 1
6
σh+ σ2h2

.

• This is a superconvergent third-order accurate approximation to

exp(−σh), but the solution becomes negative for σh > 3 eventually

reaching a mimimum of of roughly −0.1.
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Lumped DG Schemes

• Lumping the interaction terms, the equations for fL and fR become

1

2
(fR + fL) − 1 + fLh = 0 ,

and

fR −
1

2
(fR + fL) + fRh = 0 .

• Solving these equations for fR, we obtain

fR =
1

1 + σh+ 1
2
σ2h2

.

• This is a second-order accurate approximation to exp(−σh) that is

strictly positive.
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Time discretization

• Surprisingly, little research has been traditionally been done on

time-integration of the radiative transfer equations.

• The backward-Euler method is often applied. It is compatible with

standard transport solution techniques, but it is only first-order accurate.

• The Crank-Nicholson method is second-order accurate, represents a

minor variation on the backward-Euler method, and is similarly compatible

with standard transport solution techniques. However, it is highly

oscillatory.

• The linear discontinuous Galerkin method is second-order accurate and

non-oscillatory, but it’s use can significantly complicate the solution

process.
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Time discretization

• We are now investigating a variation of the ”trapezoidal-BDF-2” method,

that is second-order accurate, non-oscillatory, and compatible with

standard transport solution techniques.

• For instance, let us consider a simple nonlinear equation of the following

form:
∂f

∂t
= Af ,

where f is the solution and A is an operator that depends upon f , but is a

linear operator for fixed f . This is analogous to the radiative transfer

equations with the Planck function linearized.
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Time discretization

• Then our scheme can be expressed in predictor-corrector form as follows,

where n is the time index:

fn+ 1

2 − fn

∆t/2
= A

n

(

fn+ 1

2 + fn

2

)

,

fn+1 − fn

∆t
= A

n+ 1

2

(

fn+1 + fn+ 1

2 + fn

3

)

.

• In effect, two sequential solutions must be performed rather than one, but

standard transport solution techniqes can be used for each one.

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 41/86



Time discretization

• For the case of a linear operator A, this scheme is equivalent to

performing one half-step using Crank-Nicholson followed by another

half-step using the BDF-2 (Gear) formula:

fn+ 1

2 − fn

∆t/2
= A

(

fn+ 1

2 + fn

2

)

,

3
2

(

fn+1 − fn+ 1

2

)

− 1
2

(

fn+ 1

2 − fn
)

∆t/2
= Afn+1 .
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Solution of the Radiative Transfer Equations

• Traditional accelerated iterative solution techniques for the transport

equation are closely related to multilevel or multigrid methods.

• In most instances, some type of diffusion operator is used to approximate

a transport operator.

• For many years, such methods were thought to be unconditionally

effective as long as the diffusion equations were differenced in a manner

consistent with the spatial discretization of the transport operator.

• Unfortunately, when discontinuous Galerkin methods are used for the

transport equation, the consistent diffusion discretizations are of a mixed

form and can be very expensive to solve.
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Solution of the Radiative Transfer Equations

• A great deal of research effort has been spent over the last 20 years or so

to find ways to either use simpler diffusion discretizations or solve the full

discretizations in an approximate manner without significant loss of

effectiveness.

• These efforts have met with limited success.

• Furthermore, over the last five years or so, it has been recognized that

traditional acceleration techniques are not uniformly effective in

multidimensional calculations even when consistent diffusion

discretizations are used.

• In particular, it has been found that strong material inhomogeneities can

degrade effectiveness and occasionally generate instabilities.

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 44/86



Solution of the Radiative Transfer Equations

• It has now become clear that by recasting traditional accelerated iteration

schemes as preconditioned Krylov methods, far greater lattitude in the

choice of diffusion discretization is possible, the degrading effects of

strong material inhomogeneities can be significantly reduced, and any

associated instabilities eliminated.

• Consequently, there is currently a great deal of research within the

computational transport community devoted to preconditioned Krylov

methods.
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Solution of the Radiative Transfer Equations

• As previously noted, the radiative transfer equations are generally solved

via an approximate form of Newton’s method.

• After linearization, temporal discretization (backward-Euler), and energy

discretization (multigroup), we are able to eliminate the temperature from

the transport equation:

−→

Ω ·
−→

∇ Ig +σ∗τ,gI =
1

4π
σ∗s,gφg +

1

4π
νχg

G
∑

k=1

σ∗a,kφk +ξg , g = 1, G,

• and an intensity-dependent temperature equation:

T = T ∗+
∑G

g=1 σ
∗

a,g

[

φg − 4πB∗

g

]

+ C∗

v

∆tk (Tn − T ∗)

C∗

v

∆tk +
∑G

g=1 σ
∗
a,g4π

∂B∗

g

∂T

,
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The Equations of Thermal Radiation Transport

• where

στ = σt + τ ,

τ =
1

c∆tk
,

ν =

∑G
g=1 σ

∗

a,g4π
∂B∗

g

∂T

C∗

v

∆tk +
∑G

g=1 σ
∗
a,g4π

∂B∗

g

∂T

χg =
σ∗a,g

∂B∗

g

∂T
∑G

k=1 σ
∗

a,k
∂B∗

k

∂T

,

ξg = σ∗a,gB
∗

g + τψn
g−

1

4π
νχg

[

G
∑

k=1

σ∗a,k4πB
∗

k +
C∗

v

∆tk
(Tn − T ∗)

]

.
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Source Iteration

• The traditional method for solving the transport equation is a nested

source iteration.

• Denoting the iteration index by ℓ, the inner iteration can be represented as

follows:

−→

Ω ·
−→

∇ Iℓ+1
g + σ∗τ,gI

ℓ+1
g =

1

4π
σ∗s,gφ

ℓ
g +

1

4π
νχg

G
∑

k=1

σ∗a,kφk + ξg ,

• and the outer iteration can be represented as follows:

−→

Ω ·
−→

∇ Iℓ+1
g + σ∗τ,gI

ℓ+1
g −

1

4π
σ∗s,gφ

ℓ+1
g =

1

4π
νχg

G
∑

k=1

σ∗a,kφ
ℓ
k + ξg .
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Source Iteration

• The operator
−→

Ω ·
−→

∇ + σ∗τ,g involves no angular or energy coupling.

• When spatially discretized it takes on a block lower-triangular form with a

block corresponding to the intensities within a single spatial cell for a

single direction and energy.

• This operator is easily inverted using a “wavefront” or “sweep” algorithm.

• The attenuation of errors in φg determines the convergence rate of the

inner iteration process.

• The attenuation of errors in f =
∑G

g=1 σ
∗

a,gφg determines the

convergence rate of the outer iteration process.
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Source Iteration

• The inner iteration process can become arbitrarily slow to converge as

σ∗s,g → σ∗τ,g . This corresponds to scattering dominating absorption.

• The outer iteration can become arbitrarily slow to converge as ν → 1 and

τ → 0. This physically corresponds to strong material-radiation coupling

(small heat capacity and large absorption cross section).

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that the most slowly converging error modes for both

iterations are those that slowly vary in space.

• Thus the inversion of the advection-reaction operator is a form of

relaxation: high-frequency errors are strongly attenuated, while

low-frequency errors are poorly attenuated.
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Diffusion-Synthetic Acceleration

• Inner source iteration with diffusion-synthetic acceleration (DSA) takes the

following form:

−→

Ω ·
−→

∇ I
ℓ+ 1

2
g + σ∗τ,gI

ℓ+ 1

2
g =

1

4π
σ∗s,gφ

ℓ
g +

1

4π
νχg

G
∑

k=1

σ∗a,kφk + ξg ,

−
−→

∇ ·
1

3σ∗τ,g

−→

∇ δφg +
(

σ∗τ,g − σ∗s,g
)

δφg = σ∗s,g

(

φ
ℓ+ 1

2
g − φℓ

g

)

,

φℓ+1
g = φ

ℓ+ 1

2
g + δφg .
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Diffusion-Synthetic Acceleration

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that this scheme completely attenuates the

low-frequency error modes and grossly underestimates the high-frequency

error modes.

• This is the best one can hope for in an approximate inverse.

• The scheme is unconditionally effective in 1-D and only becomes

ineffective in strongly heterogeneous multidimensional problems.
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Linear Multifrequency-Grey Acceleration

• Outer source iteration with LMFGA takes the following form:

−→

Ω ·
−→

∇ I
ℓ+ 1

2
g + σ∗τ,gI

ℓ+ 1

2
g −

1

4π
σ∗s,gφ

ℓ+ 1

2
g =

1

4π
νχgf

ℓ + ξg ,

−
−→

∇ ·〈D〉
−→

∇ δΦ + [〈σa〉 (1 − ν) + τ ] δΦ = f ℓ+ 1

2 − f ℓ , (1)

f ℓ+1 = f ℓ+ 1

2 + 〈σa〉δΦ ,

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 53/86



Linear Multifrequency-Grey Acceleration

• where

〈D〉 =
G
∑

g=1

ςg
3σ∗τ,g

,

〈σa〉 =
G
∑

g=1

σ∗a,gςg ,

ςg =

χg

σ∗

τ,g

∑G
k=1

χk

σ∗

τ,k

.
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Linear Multifrequency-Grey Acceleration

• For the case of an infinite homogeneous medium, Fourier analysis can be

used to demonstrate that this scheme completely attenuates the

low-frequency error modes and grossly underestimates the high-frequency

error modes.

• This is the best one can hope for in an approximate inverse.

• The scheme appears to be unconditionally effective in 1-D but can

apparently become unstable in strongly heterogeneous multidimensional

problems.

• This motivates us to develop a preconditioned Krylov method based upon

the multifrequency-grey acceleration technique.

• Before deriving this scheme, we briefly discuss Krylov methods.
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Krylov Methods

• The details of Krylov methods are not of importance for this discussion,

but some knowledge is required.

• Suppose one wants to solve a linear system of the following basic form:

A
−→

x =
−→

y ,

where A is a matrix,
−→

x is the soultion vector, and
−→

y is the source

vector.

• A Krylov method will construct an approximate solution to this equation

from the space of Krylov vectors of dimension d:

Kd =
[

r,A
−→

r ,A2−→r , . . . ,Ad−1−→r
]

,

where
−→

r is the residual associated with the initial guess,
−→

x 0:

−→

r =
−→

y − A
−→

x 0 .
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Krylov Methods

• There are many different types of Krylov solvers that construct this

approximation in various ways.

•

• With most Krylov methods, the iteration process begins with an

approximate solution constructed from K1 and proceeds to provide an

approximate solution constructed from Kd on the d’th iteration.

• To use a Krylov solver, one must be able to evaluate the action of A on an

arbitrary vector,
−→

z , i.e., given
−→

z , one must compute

−→

v = A
−→

z .

• It is important to recognize that one need not actually form the matrix A to

evalutate its action.
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Krylov Methods

• In many instances, the matrix A is dense and the action of A must be

calculated in an indirect manner.

• This is the case for the matrix associated with our transport solution

technique.

• Characterizing the convergence of Krylov methods for general matrices

remains an open problem.

• However, there is one simple rule that can be followed: convergence will

improve as the domain of the eigenvalues becomes smaller and as the

domain moves away from the origin.

• Preconditioning can be used to improve convergence.

• We generally use only left preconditioning.
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A Nested Preconditioned Krylov Method

• Left preconditioning is carried out simply by multiplying the original

equation by another matrix:

PA
−→

x = P
−→

y ,

where the matrix P is called the preconditioner.

• Ideally, P would be the inverse of A, but of course one would not be using

a Krylov method if it were possible to form the action of A−1.

• An ideal practical choice for P is to make it approximate A
−1 for the

eigenvectors with eigenvalues closest to zero, and act as the identity for

the remaining eigenvalues.
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A Nested Preconditioned Krylov Method

• Our aim is to derive an equation for the absorption rate, f , from the

equation for the intensity, I .

• The Krylov method will be used to solve a preconditioned variant of the

equation for f .

• Once f is obtained, I can be obtained by solving G independent

monoenergetic transport equations.

• We begin by expressing the transport equation in operator form:

AgIg =

[

1

4π
νχgf + ξg

]

, g = 1, G.

Ag ≡
−→

Ω ·
−→

∇ + σ∗τ,g −
1

4π
σs,gP ,

P〈·〉 =

∫

4π

〈·〉 dΩ ,
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A Nested Preconditioned Krylov Method

• Solving the transport equation for Ig , we obtain

Ig = A
−1
g

[

1

4π
νχgf + A

−1
g ξg

]

, g = 1, G.

• Given f , this equation is solved via a preconditioned Krylov method to

obtain Ig .

• Integrating the above equation over all directions, multiplying on the left by

σ∗τ,g , and summing over all groups yields the desired equation for f :

Bf =
G
∑

g=1

σ∗a,gPA
−1
g ξg ,

B =



I −
G
∑

g=1

σ∗a,gPA
−1
g

1

4π
νχg



 ,
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A Nested Preconditioned Krylov Method

• The action of B requires the solution of G independent monoenergetic

transport equations.

• These equations must be solved via a preconditioned Krylov method,

yielding an overall Krylov method that is nested.

• There are two advantages to solving the equation for f :

• The rank of the f -equation is far less than that of the original transport

equation - number of space points versus number of space points times

number of energies times number of directions.

• The transport operator is unbounded but B is compact with real

eigenvalues between 0 and 1.
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A Nested Preconditioned Krylov Method

• We left precondition the f equation with the operator C:

CBf = C

G
∑

g=1

σ∗a,gPA
−1
g ξg ,

C ≡
(

I + 〈σa〉H
−1ν

)

,

H ≡ −
−→

∇ ·〈D〉
−→

∇ + [〈σa〉(1 − ν) + τ ] .

• Note that H is the diffusion operator from the LMFGA method.

• C is a very effective preconditioner.

• An infinite-medium Fourier analysis shows that C becomes the exact

inverse of B when operating on eigenfunctions of B in the limit as the

eigenvalue approaches zero.
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A Nested Preconditioned Krylov Method

• There is a simple relationship between our preconditioned Krylov method

and the linear multifrequency-grey acceleration technique.

• In particular, the accelerated iteration for the absorption rate can be

expressed as follows:

f ℓ+1 = f ℓ + C

G
∑

g=1

σ∗a,gPA
−1
g ξg − CBf ℓ ,

• Note that this is just Richardson iteration on the system solved in our

Krylov method.

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 64/86



A Nested Preconditioned Krylov Method

• We use a similar strategy for solving the group equations.

• We derive an equation for φg that has a lower rank than the original

monoenergetic transport equation.

• The operator associated with this reduced-rank equation is compact with

real eigenvalues between 0 and 1.

• We use a Krylov method to solve a preconditioned variant of this equation.

• The preconditioner contains the inverse of the diffusion operator

associated with the DSA method, and is very effective because it moves

the eigenvalues nearest zero to essentially one.

• Once φg has been obtained, Ig can be obtained via a solution of the block

lower triangular advection-reaction equation.

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 65/86



A Nested Preconditioned Krylov Method

• The dominant effort required to apply the action of the overall

preconditioned operator for f consists of:

• A solution of a block lower-triangular equation and a DSA diffusion

equation for each energy group and each inner preconditioned Krylov

iteration.

• A solution of the LMFGA diffusion equation.

• The diffusion equations themselves are solved via a precondioned Krylov

method.

• If the diffusion solution technique is efficient, the transport solution

technique will be efficient.

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 66/86



A Nested Preconditioned Krylov Method

• Our nested preconditioned transport method has not yet been tested, but

a multigroup diffusion variant of it has been tested, and we will present

some results here.

• The strategy of obtaining a reduced-rank equation cannot be applied

unless the interaction operators are low-rank.

• If the interaction operators are full rank, effective preconditioners may or

may not be constructed from from low-rank or coarse-grid approximate

inverses.

• In some cases, full-rank interaction terms require true multigrid

preconditioners.

• It may not always be optimal to use a reduced-rank equation.

• To illustrate this point, we consider a variant of our solution technique with

the following properties: properties.
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A Nested Preconditioned Krylov Method

• To illustrate this point, we consider a variant of our solution technique with

the following properties:

• The vector of angle-integrated intensities is the unknown rather than

the vector of absorption rates.

• The block lower-triangular advection-reaction equation is solved for

each group rather than a transport equation for each group. Thus the

cost per iteration will be lower.

• Preconditioning is performed by solving a diffusion equation for each

group and then by solving a grey diffusion equation.
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A Nested Preconditioned Krylov Method

• It is not clear if the preconditioners will be as effective for this formulation

as they are for absorption rate formulation.

• Thus it is unclear if the overall cost of this formulation will be reduced or

increased relative to that of the absorption rate formulation.

• These methods can be formulated in many different ways.

• This field of research is largely unexplored and very rich.
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A Multigroup Diffusion Example

• We have tested a method that solves the following equation:

−
−→

∇ ·D∗

g

−→

∇ φg + σ∗τ,gφg − νχg

G
∑

k=1

σ∗a,kφk = ξg , g = 1, G,

• The method is analogous to our transport method.

• The only significant difference is that

Ag ≡ −
−→

∇ ·Dg

−→

∇ + σ∗τ,g .

• Thus we solve a diffusion equation rather than a transport equation for

each group.
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A Multigroup Diffusion Example

• There are really only two material regions, the middle region facilitates

non-uniform zoning.

• There are two problems: one with a uniform density everywhere and the

other with a density jump of 1000 between the inner and outer regions -

both were performed with the same 10-group cross sections.

• The radiation source is turned on at t = 0 and radiation propagates

through the system.

Cylindrical Geometry for Diffusion Test Problems.

Source
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A Multigroup Diffusion Example

Comparisons for the variable–density calculations.

No. of “Outer” No. of “Inner”∆t (sh) Method Time (s)
Iterations Iterations

LMFGK 327.2 7.98 1424.42
0.1

LMFGA 679.1 25.73 2929.14

LMFGK 1776.7 3.55 668.40
0.01

LMFGA 2353.6 8.07 785.00

LMFGK 9412.8 1.26 260.32
0.001

LMFGA 11020.7 1.56 190.12
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A Multigroup Diffusion Example

Comparisons for the uniform–density calculations.

No. of “Outer” No. of “inner”∆t (sh) Method Time (s)
Iterations Iterations

LMFGK 62.8 3.41 455.71
0.2

LMFGA 79.3 6.14 472.31

LMFGK 117.3 2.83 403.83
0.1

LMFGA 139.4 4.57 376.99

LMFGK 897.7 1.228 249.49
0.01

LMFGA 1014.4 1.375 180.97

Presentation at Universit de Nice-Sophia Antipolis, Nice, France, July 30 - September 3, 2007 Slide 73/86



A Multigroup Diffusion Example

Outer iteration counts as a function of time-step number for the

variable–density problem with a 0.1 sh time step.
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A Multigroup Diffusion Example

• The Krylov method always takes fewer iterations than the acceleration

method.

• The Krylov method performs takes significantly few iterations with a large

discontinuity in density.

• The relative CPU times are not proportional to the number of iterations

because the Krylov method requires more time per outer iteration because

more inner iterations are required with the Krylov method.

• This is an unexpected effect that is easily understood.

• The inner solves for the acceleration technique have increasingly better

initial guesses as the solution converges - the guesses are the solutions

from the previous outer iteration.

• The inner iteration solutions for the Krylov method are independent for

each outer iteration, so an initial guess of zero is always used.
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A Multigroup Diffusion Example

• The ratio of iterations between the two methods varies significantly

between time steps.

• The acceleration method has been observed to go unstable in complex

and highly heterogeneous calculations.

• The Krylov method has so far remained effective in such calculations.

• Heuristic methods have been developed to deal with the instabilities of the

acceleration technique, but a robust method is always preferable.
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The Physical Effect of Material Motion

• The radiative transfer equations for a static medium account for both

radiation energy and radiation momentum deposition in the material, but

they assume that the material motion induced by this deposition is

negligible.

• When it is not, the fluid dynamics equations and the radiation transport

equation must be coupled, yielding the radiation-hydrodynamics equations.

• We will defer a discussion of the radiation-hydrodynamics equations until

we discuss the effect of material motion on the transport equation itself.
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The Physical Effect of Material Motion

• In the lab frame, material motion simply has the effect of modifying the

cross sections, which are defined in the rest frame of the material.

• It might be assumed that material motion can be neglected for continuum

transport if the material speed is less than a percent of the speed of light,

but care must be taken.

• Although the material motion correction terms are relatively small,

neglecting them means that the change in the kinetic energy of the

material due to momentum deposition by the photons will not be removed

from the photon energy field.

• This imbalance can be significant over the course of an entire calculation

even with very small material speeds.
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The Comoving Frame

• In principle, one can treat material motion by recomputing the cross

sections kinematically in the lab frame with material motion, but this would

be onerous.

• An alternative is to apply an instantanous Lorentz transformation at each

point and time to a frame that is locally at rest with respect to the material.

• This is called the comoving frame.

• The comoving-frame intensity, I(t,
−→

r ,
−→

Ω 0, E0), represent the intensity

at lab-frame time t and lab-frame space point
−→

r , seen in a frame moving

at the local material velocity,
−→

v (t,
−→

r ), due to photons with comoving

direction
−→

Ω 0 and comoving energy E0.
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The Comoving Frame

• Comoving interaction rates are easily computed since the cross sections

are valid in the comoving frame.

• Lorentz transformations together with physical principles, e.g., the number

of photon interactions observed over a differential time must be identical in

both frames, can be used to relate the lab-frame and comoving-frame

interaction terms, thus making it possible to obtain the lab-frame equation

in terms of the comoving frame cross sections.

• This equation is sometimes called the “mixed-frame” equation, but it is

really just the lab-frame equation.
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The Relativistic Lab-Frame Equation

• The relativistic lab-frame equation can be expressed as follows:

1

c

∂I

∂t
+

−→

Ω ·
−→

∇ I + (E0/E)σt(E0)I(
−→

Ω , E) =

(E/E0)
2 σs

4π

∫

4π

(E0/E
′) I(

−→

Ω
′

, E′) dΩ′+(E/E0)
2 σa(E0)B(E0) ,

where

E0 = E γ
(

1 −
−→

Ω ·
−→

u /c
)

,

γ =
(

1 − u2/c2
)−

1

2 ,

E′ = E
1 −

−→

Ω ·
−→

u /c

1 −
−→

Ω
′

·
−→

u /c
.
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The O(u/c) Lab-Frame Equation

• The relativistic lab-frame equation is sometimes expanded to O(u/c) for

nonrelativistic applications:

1

c

∂I

∂t
+

−→

Ω ·
−→

∇ I + σtI =
σs

4π
ϕ+ σaB+

[(

σt + E
∂σa

∂E

)

I +
σs

4π

(

2ϕ− E
∂ϕ

∂E

)

+ 2σaB −BE
∂σa

∂E
− σaE

∂B

∂E

σs

4π

(

−→

F − E
∂
−→

F

∂E

)

·
−→

u /c .
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A Simplified Lab-Frame Transport Equation

• Our primary intent is to accurately compute the exchange of energy and

momentum between the radiation and material fields.

• Detailed radiation spectra are not of interest.

• We have derived an approximate lab-frame transport equation in

accordance with these constraints that has the following properties when

coupled with the hydrodynamic equations:

• Total (radiation plus material) energy and momentum are conserved.

• The correct equilibrium solutions for radiation energy density, radiation

flux, and radiation pressure are obtained to O(u/c)

• The equilibrium-diffusion limit for radiation-hydrodynamics is preserved

to O(u/c).

• The approximate equation is almost correct to O(u/c) in an integral sense

with grey (frequency-independent) cross sections.
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A Simplified Lab-Frame Transport Equation

• The simplified equation takes the form of the transport equation in a static

medium plus a P1-like correction term:

1

c

∂Ig
∂(

t) +
−→

Ω ·
−→

∇ Ig + σt,gIg =
σs,g

4π
φg + σa,gBg+

1

4π
C0,g +

3

4π

−→

C 1,g ·
−→

Ω ,

where

C0,g = −σt,g

(

−→

F g −
4

3
φg

−→

u

c

)

·

−→

u

c
,

−→

C 1,g = σt,g
4

3
φg

−→

u .
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A Simplified Lab-Frame Transport Equation

• The corresponding radiation energy and radiation momentum equations

are respectively:

∂E

∂t
+

−→

∇ ·
−→

F =

G
∑

g=1

σa,g[ 4πBg−φg ]−

G
∑

g=1

σa,g

(

−→

F g −
4

3
φg

−→

u

c

)

·

−→

u

c
,

and

1

c2
∂
−→

F g

∂t
+

−→

∇ ·
=⇒

Pg +
G
∑

g=1

σa,g

c

−→

F g =
G
∑

g=1

σa,g

c

4

3
φg

−→

u

c
,

• The C0 terms subtract the change in the material kinetic energy due to

radiation momentum deposition from the radiation field.
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A Simplified Lab-Frame Transport Equation

• The
−→

C 1 terms ensure that the comoving-frame flux in equilibrium is given

by
−→

F 0 =
−→

F −
4

3
E
−→

u ,

which is correct through O(u/c), and they also ensure that there is no

momentum deposition in equilibrium.

• Our approximation differentiates between the comoving-frame and

lab-frame radiation fluxes, but effectively neglects the difference between

the comoving-frame and lab-frame radiation energy densities.

• The maximum relative difference between E0 and E is roughly 2 percent,

but the relative difference between
−→

F 0 and
−→

F is infinite.

• While
−→

F has a magnitude in equilibrium of roughly 1 percent of cE,
−→

F 0

in equilibrium is zero.
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