Radiative transfer in stellar atmospheres

Jiří Kubát kubat@sunstel.asu.cas.cz

Astronomický ústav AV ČR Ondřejov

Outline

- 1. Introduction stellar atmosphere
- 2. Model stellar atmosphere
- 3. Radiative transfer equation
- 4. Frequency coupling
 - (a) within lines
 - (b) across lines
 - (c) in moving media
- 5. Boundary conditions
- 6. Construction of the model stellar atmosphere
- 7. Formal solution of the RTE

Stellar atmosphere

- part connecting dense stellar core and transparent interstellar medium
- "boundary layer" (Morel, this workshop)
- the only part of the star we directly see
- Iight carries the only information about astronomical objects
- Iight influences the state of the stellar atmosphere
 - change of ionization stages
 - change of the population numbers
 - energy transfer \Rightarrow heating
 - momentum transfer \Rightarrow stellar wind

standard task of stellar atmosphere physics:

- determination of space distribution of basic physical quantities $T(\vec{r})$, $n_e(\vec{r})$, $\rho(\vec{r})$, $\vec{v}(\vec{r})$, $J_{\nu}(\vec{r})$, $n_i(\vec{r})$, ...
- by solving equations
 - energy equilibrium (T)
 - radiative transfer (J_{ν})
 - statistical equilibrium (n_i)
 - state equation (n_e)
 - continuity (ρ)
 - motion (\vec{v})

standard task of stellar atmosphere physics:

- determination of space distribution of basic physical quantities $T(\vec{r})$, $n_e(\vec{r})$, $\rho(\vec{r})$, $\vec{v}(\vec{r})$, $J_{\nu}(\vec{r})$, $n_i(\vec{r})$, ...
- by solving equations for static case
 - radiative equilibrium (T)
 - radiative transfer (J_{ν})
 - statistical equilibrium (n_i)
 - state equation (n_e)
 - hydrostatic equilibrium (ρ)

standard task of stellar atmosphere physics:

- determination of space distribution of basic physical quantities $T(\vec{r})$, $n_e(\vec{r})$, $\rho(\vec{r})$, $\vec{v}(\vec{r})$, $J_{\nu}(\vec{r})$, $n_i(\vec{r})$, ...
- by solving equations for static case
 - radiative equilibrium (T)
 - radiative transfer (J_{ν})
 - statistical equilibrium (n_i)
 - state equation (n_e)
 - hydrostatic equilibrium (ρ)
- huge system of equations, approximations necessary
- once the atmospheric structure is known, detailed $I_{\mu\nu}$ can be calculated

final goal – comparison with observations

final goal - comparison with observations

Koubský et al. (1997, A&A 328, 551)

Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 - p. 5

final goal – comparison with observations

- usually performed in 2 steps
 - 1. model atmosphere calculation (structure)
 - 2. calculation of detailed synthetic spectrum (solution of the radiative transfer equation for a given source function)
 - in all steps solution of the radiative transfer equation

final goal – comparison with observations

- sometimes performed in 3 steps
 - 1. model atmosphere calculation (structure)
 - 2. NLTE problem for trace elements determination of some n_i for given atmospheric structure
 - calculation of detailed synthetic spectrum (solution of the radiative transfer equation for a given source function)
 - in all steps solution of the radiative transfer equation

$$\frac{1}{c} \frac{\partial I(\vec{r}, \vec{n}, \nu, t)}{\partial t} + (\vec{n} \cdot \nabla) I(\vec{r}, \vec{n}, \nu, t) = \eta(\vec{r}, \vec{n}, \nu, t) - \chi(\vec{r}, \vec{n}, \nu, t) I(\vec{r}, \vec{n}, \nu, t)$$

 $\eta(\vec{r},\vec{n},\nu,t)$ – emissivity $\chi(\vec{r},\vec{n},\nu,t)$ – absorption coefficient (opacity)

stellar atmospheres – full spatial 3D desirable

$$\frac{1}{c} \frac{\partial I(\vec{r}, \vec{n}, \nu, t)}{\partial t} + (\vec{n} \cdot \nabla) I(\vec{r}, \vec{n}, \nu, t) = \eta(\vec{r}, \vec{n}, \nu, t) - \chi(\vec{r}, \vec{n}, \nu, t) I(\vec{r}, \vec{n}, \nu, t)$$

simplifying assumptions: stationarity $(\partial/\partial t \rightarrow 0)$

$$\frac{1}{c} \frac{\partial I(\vec{r}, \vec{n}, \nu, t)}{\partial t} + (\vec{n} \cdot \nabla) I(\vec{r}, \vec{n}, \nu, t) = \eta(\vec{r}, \vec{n}, \nu, t) - \chi(\vec{r}, \vec{n}, \nu, t) I(\vec{r}, \vec{n}, \nu, t)$$

simplifying assumptions: stationarity ($\partial/\partial t \rightarrow 0$) $(\vec{n} \cdot \nabla)I(\vec{r}, \vec{n}, \nu, t) = \eta(\vec{r}, \vec{n}, \nu, t) - \chi(\vec{r}, \vec{n}, \nu, t)I(\vec{r}, \vec{n}, \nu, t)$

$$(\vec{n}\cdot\nabla)I(\vec{r},\vec{n},\nu,t) = \eta(\vec{r},\vec{n},\nu,t) - \chi(\vec{r},\vec{n},\nu,t)I(\vec{r},\vec{n},\nu,t)$$

static atmosphere ($\vec{v} = 0$)

$$(\vec{n}\cdot\nabla)I(\vec{r},\vec{n},\nu,t) = \eta(\vec{r},\vec{n},\nu,t) - \chi(\vec{r},\vec{n},\nu,t)I(\vec{r},\vec{n},\nu,t)$$

static atmosphere ($\vec{v} = 0$)

$$(\vec{n}\cdot\nabla)I(\vec{r},\vec{n},\nu,t) = \eta(\vec{r},\nu,t) - \chi(\vec{r},\nu,t)I(\vec{r},\vec{n},\nu,t)$$

 $(\vec{n} \cdot \nabla)I(\vec{r}, \vec{n}, \nu, t) = \eta(\vec{r}, \nu, t) - \chi(\vec{r}, \nu, t)I(\vec{r}, \vec{n}, \nu, t)$ 3D \rightarrow 1D plane-parallel:

 $(\vec{n} \cdot \nabla)I(\vec{r}, \vec{n}, \nu, t) = \eta(\vec{r}, \nu, t) - \chi(\vec{r}, \nu, t)I(\vec{r}, \vec{n}, \nu, t)$ 3D \rightarrow 1D plane-parallel:

$$\mu \frac{\mathrm{d}I(\mu,\nu,z)}{\mathrm{d}z} = \eta(\nu,z) - \chi(\nu,z)I(\mu,\nu,z)$$

 $\mu = \cos \theta$ – angle cosine of the ray

$$\mu \frac{\mathrm{d}I(\mu,\nu,z)}{\mathrm{d}z} = \eta(\nu,z) - \chi(\nu,z)I(\mu,\nu,z)$$

 $I(\nu) \to I_{\nu}:$ $\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$

plane-parallel approximation

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

plane-parallel approximation

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

spherically symmetric approximation

$$\mu \frac{\partial I_{\mu\nu}(r)}{\partial r} + \frac{1-\mu^2}{r} \frac{\partial I_{\mu\nu}(r)}{\partial \mu} = \eta_{\nu}(r) - \chi_{\nu}(r)I_{\mu\nu}(r)$$

Coupling in radiative transfer

- spatial long distance interaction
- angular scattering
- frequency

crucial in stellar atmospheres

 no interaction with matter \Rightarrow no frequency coupling (*I* constant)

- no interaction with matter \Rightarrow no frequency coupling (*I* constant)
- photon-matter (atoms, molecules, grains) interaction
 - coherent scattering $(\nu' = \nu)$ photons may change direction, but not frequency pure scattering RTE

$$\mu \frac{\mathrm{d}I_{\mu}}{\mathrm{d}\tau} = I_{\mu} - \frac{1}{2} \int_{-1}^{1} \sigma_{\mu\mu'} I_{\mu'} \,\mathrm{d}\mu' \tag{2}$$

a siginficant part of the Chandrasekhar's Radiative Transfer book

photon-matter (atoms, molecules, grains) interaction

 line profiles natural (Lorentz) profile

$$\varphi_{\nu} = \frac{\frac{\Gamma}{4\pi^2}}{\left(\nu - \nu_0\right)^2 + \left(\frac{\Gamma}{4\pi}\right)^2}$$

$$\nu' \neq \nu$$
 complete or partial redistribution

- photon-matter (atoms, molecules, grains) interaction
 - line profiles

Doppler broadening caused by thermal motions

$$\varphi_{\nu} = \frac{1}{\Delta \nu_D \sqrt{\pi}} \exp\left(\frac{\nu - \nu_0}{\Delta \nu_D}\right)$$

$$\Delta
u_D = rac{
u_0}{c} \sqrt{rac{2kT}{m}}$$
significant (dominant) for stellar atmospheres

coupling of radiation within lines

- complete and partial redistribution
- thermal motions
- Stark broadening, collisional broadening two-level atom

$$\mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}z} = \frac{h\nu}{4\pi} \left[-n_l \varphi_{\nu} B_{lu} I_{\nu} + n_u \psi_{\nu} \left(A_{ul} + B_{ul} I_{\nu} \right) \right]$$

 $\psi(\nu) = \int r(\nu',\nu) \varphi(\nu') \,\mathrm{d}\nu'$

all line frequencies have to be solved together

absorbed photon may be

- reemitted in the same line (transition)
- emitted in a different line or lines (transitions)
- destroyed by collisional transition (heating)

photon may be emitted after collisional excitation (cooling)

absorbed photon may be

- reemitted in the same line (transition)
- emitted in a different line or lines (transitions)
- destroyed by collisional transition (heating)

photon may be emitted after collisional excitation (cooling)

absorption or emission

absorption or emission change of the atomic excitation states distribution opacity change

$n_i \sum_{l} (R_{il} + C_{il}) + \sum_{l} n_l (R_{li} + C_{li}) = 0$

equations of statistical equilibrium

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

$$\sum_{l \neq i} \{ n_l [R_{li} + C_{li}] - n_i (R_{il} + C_{il}) \} = 0, \qquad i = 1, \dots \text{NL}$$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

$$\sum_{l \neq i} \{ n_l \left[R_{li}(J_{\nu}) + C_{li} \right] - n_i \left(R_{il}(J_{\nu}) + C_{il} \right) \} = 0, \qquad i = 1, \dots \text{NL}$$

radiative rates

$$n_i R_{il} = n_i 4\pi \int \frac{\alpha_{il}(\nu)}{h\nu} J_{\nu} \, \mathrm{d}\nu$$
$$n_l R_{li} = n_l \frac{g_i}{g_j} 4\pi \int \frac{\alpha_{ij}(\nu)}{h\nu} \left(\frac{2h\nu^3}{c^2} + J_{\nu}\right) \, \mathrm{d}\nu$$

energy conservation

- uneven distribution of spectral lines
- huge amount of lines in the UV region
- Iarge radiative flux in the UV region
- radiation is absorbed in UV, emitted in visual and IR

energy conservation

- uneven distribution of spectral lines
- huge amount of lines in the UV region
- Iarge radiative flux in the UV region
- radiation is absorbed in UV, emitted in visual and IR

line blanketing

line blanketing

- caused mostly by Fe and Ni lines
- Fe II: $\sim 10^7$ lines (Johansson, Kurucz)
- Iarge absorption of high energetic radiation in UV

reemission in other parts of the spectrum

expanding atmospheres ($\vec{v}(\vec{r}) \neq 0$, dv/dr > 0)

- atomic absorption and emission (scattering) takes place in a rest frame of an atom (comoving frame)
- Doppler shift changes the frequency of lines in a observer frame
- in the observer frame $\nu' \neq \nu$

Gayley & Owocki (1994, ApJ 434, 684)

P-Cygni profiles

Ondřejov 29.8.1995

P-Cygni profile formation

Lamers & Cassinelli (1999, Introduction to stellar winds, Cambridge Univ. Press)

radiative transfer equation

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\mu\nu}(z) - \chi_{\mu\nu}(z)I_{\mu\nu}(z)$$

 $\chi_{\mu\nu}(z)$ and $\eta_{\mu\nu}(z)$ angle dependent

$$\nu' = \nu \left(1 - \frac{\vec{n} \cdot \vec{v}}{c} \right) = \nu \left(1 - \mu \frac{v}{c} \right)$$

comoving frame radiative transfer equation ($\mu' \rightarrow \mu$, $\nu' \rightarrow \nu$)

$$\mu \frac{\partial I_{\mu\nu}(z)}{\partial z} - \left[\frac{\mu^2 \nu}{c} \frac{\partial v}{\partial z}\right] \frac{\partial I_{\mu\nu}(z)}{\partial \nu} = \eta_{\nu}(z) - \chi_{\nu}(z) I_{\mu\nu}(z)$$

comoving frame radiative transfer equation ($\mu' \rightarrow \mu$, $\nu' \rightarrow \nu$)

$$\mu \frac{\partial I_{\mu\nu}(z)}{\partial z} - \begin{bmatrix} \frac{\mu^2 \nu}{2\nu} \frac{\partial v}{\partial z} \end{bmatrix} \frac{\partial I_{\mu\nu}(z)}{\partial \nu} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

static equation

comoving frame radiative transfer equation ($\mu' \rightarrow \mu$, $\nu' \rightarrow \nu$)

$$\mu \frac{\partial I_{\mu\nu}(z)}{\partial z} - \left[\frac{\mu^2 \nu}{c} \frac{\partial v}{\partial z}\right] \frac{\partial I_{\mu\nu}(z)}{\partial \nu} = \eta_{\nu}(z) - \chi_{\nu}(z) I_{\mu\nu}(z)$$

large velocity gradients – Sobolev approximation

Boundary conditions

stellar atmosphere

transition from dense stellar core to transparent interstellar medium

upper boundary condition: $I^- = 0$ (no irradiation)

lower boundary condition: diffusion approximation

$$I_{\mu\nu} = \sum_{n=0}^{\infty} \mu^n \frac{\mathrm{d}^n B_\nu}{\mathrm{d}\tau_\nu^n} = B_\nu + \mu \frac{\mathrm{d}B_\nu}{\mathrm{d}\tau_\nu} + \mu^2 \frac{\mathrm{d}^2 B_\nu}{\mathrm{d}\tau_\nu^2} + \cdots$$

Ζ

simplified situation: 1D static plane-parallel atmosphere

we take into account

- radiation from all directions (one angle variable)
- full frequency spectrum

Ζ

simplified situation: 1D static plane-parallel atmosphere

we take into account

- radiation from all directions (one angle variable)
- full frequency spectrum

solution of

- radiative transfer equation $(I_{\mu\nu})$
- equation of radiative equilibrium (T)
- equation of hydrostatic equilibrium (ρ)
- equations of statistical equilibrium (n_i)

solution of

- **•** radiative transfer equation $(I_{\mu\nu})$
- \blacksquare equation of radiative equilibrium (T)
- **e** equation of hydrostatic equilibrium (ρ)
- equations of statistical equilibrium (n_i)

• radiative transfer equation $(I_{\mu\nu})$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

- \blacksquare equation of radiative equilibrium (T)
- **equation of hydrostatic equilibrium** (ρ)
- equations of statistical equilibrium (n_i)

• radiative transfer equation $(I_{\mu\nu})$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

 \blacksquare equation of radiative equilibrium (T)

$$4\pi \int_0^\infty \left(\chi_\nu J_\nu - \eta_\nu\right) \,\mathrm{d}\nu = 0$$

- **e** equation of hydrostatic equilibrium (ρ)
- equations of statistical equilibrium (n_i)

• radiative transfer equation $(I_{\mu\nu})$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

 \blacksquare equation of radiative equilibrium (T)

$$4\pi \int_0^\infty \left(\chi_\nu J_\nu - \eta_\nu\right) \,\mathrm{d}\nu = 0$$

equation of hydrostatic equilibrium (ρ)

$$\frac{\mathrm{d}p}{\mathrm{d}m} = g - \frac{4\pi}{c} \int_0^\infty \frac{\chi_\nu}{\rho} H_\nu \,\mathrm{d}\nu$$

• radiative transfer equation $(I_{\mu\nu})$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

 \blacksquare equation of radiative equilibrium (T)

$$4\pi \int_0^\infty \left(\chi_\nu J_\nu - \eta_\nu\right) \,\mathrm{d}\nu = 0$$

equation of hydrostatic equilibrium (ρ)

$$\frac{\mathrm{d}p}{\mathrm{d}m} = g - \frac{4\pi}{c} \int_0^\infty \frac{\chi_\nu}{\rho} H_\nu \,\mathrm{d}\nu$$

$$n_i \sum_{l} (R_{il} + C_{il}) + \sum_{l} n_l (R_{li} + C_{li}) = 0$$

• radiative transfer equation $(I_{\mu\nu})$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

• equation of radiative equilibrium (T) T given

equation of hydrostatic equilibrium (ρ) ρ given

$$n_i \sum_{l} (R_{il} + C_{il}) + \sum_{l} n_l (R_{li} + C_{li}) = 0$$

s radiative transfer equation $(I_{\mu\nu})$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

T given

 ρ given

$$n_{i} \sum_{l} (R_{il} + C_{il}) + \sum_{l} n_{l} (R_{li} + C_{li}) = 0$$

s radiative transfer equation $(I_{\mu\nu})$

$$\mu \frac{\mathrm{d}I_{\mu\nu}(z)}{\mathrm{d}z} = \eta_{\nu}(z) - \chi_{\nu}(z)I_{\mu\nu}(z)$$

T given

 ρ given

• equations of statistical equilibrium (n_i)

$$n_i \sum_{l} (R_{il} + C_{il}) + \sum_{l} n_l (R_{li} + C_{li}) = 0$$

Non-LTEline formation for trace
elements in stellar atmospheresNice, France30 July - 4 August 2007

Formal solution of the RTE

next step after calculation the model atmosphere and the occupation numbers

any solution for given χ_{ν} and η_{ν} (given S_{ν}) – relatively simple

- Ist order differential or integral equation
- Ind order differential equation common in stellar atmospheres (Feautrier solution)

crucial for the total accuracy of the whole problem solution

Feautrier solution of the RTE

solution along a ray (specific intensities I^+ and I^-) introduce "Feautrier variables"

$$u_{\mu\nu} = \frac{1}{2} \left(I_{\mu\nu}^{+} + I_{\mu\nu}^{-} \right)$$
$$v_{\mu\nu} = \frac{1}{2} \left(I_{\mu\nu}^{-} + I_{\mu\nu}^{-} \right)$$

the transfer equation

$$\frac{\mathrm{d}^2 u_{\mu\nu}}{\mathrm{d}\tau_{\mu\nu}^2} = u_{\mu\nu} - S_{\nu}$$

+ boundary conditions

Short characteristics

for a finite slab

outward direction

$$I_{\mu\nu}^{+}(\tau_{\nu}) = I_{\mu\nu}^{+}(T_{\nu}) e^{-\frac{T_{\nu}-\tau_{\nu}}{\mu}} + \frac{1}{\mu} \int_{\tau_{\nu}}^{T_{\nu}} S(t) e^{-\frac{t-\tau_{\nu}}{\mu}} dt$$

inward direction

$$I_{\mu\nu}^{-}(\tau_{\nu}) = I_{\mu\nu}^{-}(0) e^{-\frac{\tau_{\nu}}{\mu}} + \frac{1}{(-\mu)} \int_{0}^{\tau_{\nu}} S(t) e^{-\frac{\tau_{\nu}-t}{\mu}} dt$$

Conclusions

radiation in stellar atmospheres

- carries the only information about astronomical objects
- influences the state of the stellar atmosphere
 - change of ionization stages
 - change of the population numbers
 - energy transfer \Rightarrow heating
 - momentum transfer \Rightarrow stellar wind
- spatial, angle, and frequency coupling